PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (65)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  THE EFFECT OF MENTHOL ON CIGARETTE SMOKING BEHAVIORS, BIOMARKERS AND SUBJECTIVE RESPONSES 
Background
As part of the Family Smoking Prevention and Tobacco Control Act, the United States Food and Drug Administration charged the Tobacco Products Scientific Advisory Committee with developing a report and recommendations regarding the effect of menthol in cigarettes on the public health. The purpose of this study was to examine smoking behaviors, biomarkers of exposure and subjective responses when switching from a novel menthol cigarette to a non-menthol cigarette to isolate the effect of menthol and to approximate the effect a menthol ban might have on smokers.
Methods
Thirty two adult smokers completed this 35-day randomized, open-label, laboratory study. After a 5-day baseline period, participants were randomized to the experimental group (n=22) where they would smoke menthol Camel Crush for 15 days followed by 15 days of non-menthol Camel Crush, or the control group (n=10) where they smoked their own brand cigarette across all periods. Participants attended study visits every five days and completed measures of smoking rate, smoking topography, biomarkers of exposure, and subjective responses.
Results
Although total puff volume tended to increase when the experimental group switched from menthol to non-menthol (p=0.06), there were no corresponding increases in cigarette consumption or biomarkers of exposure (ps>0.1). Subjective ratings related to taste and smell decreased during the non-menthol period (ps<0.01), compared to the menthol.
Conclusions
Results suggest menthol has minimal impact on smoking behaviors, biomarkers of exposure and subjective ratings.
Impact
When controlling for all other cigarette design features, menthol in cigarettes had minimal effect on outcome measures.
doi:10.1158/1055-9965.EPI-12-1097
PMCID: PMC3596436  PMID: 23334588
cigarette; menthol; smoking; nicotine; behavior
2.  Dietary Flaxseed in Non-Small Cell Lung Cancer Patients Receiving Chemoradiation 
Purpose
The standard of care in Locally-Advanced Non-Small Cell Lung Cancer (LA-NSCLC) is chemotherapy and radiation; however, Radiation-Induced Lung Injury (RILI), which may be prevented by the anti-inflammatory and anti-oxidant properties of Flaxseed (FS), impedes its maximum benefit.
Materials and Methods
Patients with LA-NSCLC requiring definitive RT were randomized to one FS or control muffin daily from start to 2 weeks after RT. Blood and urine were collected to quantify plasma FS metabolites, Enterodione (ED) and Enterolactone (EL), and urinary oxidative stress biomarkers, 8, 12-iso-iPF2a-VI (isoprostane) and 8-oxo-7,8-dihydro-2′deoxyguanosine (8-oxo-dGuo). Tolerability was defined as consuming ≥ 75% of the intended muffins and no ≥ grade 3 gastrointestinal toxicities.
Results
Fourteen patients (control,7; FS,7) were enrolled. The tolerability rates were 42.9 versus 71.4% (p=0.59) for FS and control, respectively. Mean percentages of intended number of muffins consumed were 37% versus 73% (p=0.12). ED and EL increased at onset of FS and decreased with discontinuation, confirming bioavailability. Isoprostane and 8-oxo-dGuo were detectable. There was a trend towards decreased rates of pneumonitis in FS.
Conclusions
This is the first study to report FS bioavailability and quantify oxidative stress markers in NSCLC patients. FS in the administered muffin formulation did not meet tolerability criteria. Given the promising mechanism of FS as a radioprotectant, further investigations should focus on the optimal method for administration of FS.
doi:10.4172/2161-105X.1000154
PMCID: PMC3932620  PMID: 24575360
Flaxseed; Lignan; Radiation; Isoprostane; 8-oxo dGuo; Non-small cell lung cancer; Radiation induced lung injury; RILI; Pneumonitis; Fibrosis; Esophagitis
3.  Exome sequencing to identify de novo mutations in sporadic ALS trios 
Nature neuroscience  2013;16(7):10.1038/nn.3412.
ALS is a devastating neurodegenerative disease whose causes are still poorly understood. To identify additional genetic risk factors, here we assess the role of de novo mutations in ALS by sequencing the exomes of 47 ALS patients and both of their unaffected parents (n=141 exomes). We found that amino acid-altering de novo mutations are enriched in genes encoding chromatin regulators, including the neuronal chromatin remodeling complex component SS18L1/CREST. CREST mutations inhibit activity-dependent neurite outgrowth in primary neurons, and CREST associates with the ALS protein FUS. These findings expand our understanding of the ALS genetic landscape and provide a resource for future studies into the pathogenic mechanisms contributing to sporadic ALS.
doi:10.1038/nn.3412
PMCID: PMC3709464  PMID: 23708140
4.  Development of a Genotyping Microarray for Studying the Role of Gene-Environment Interactions in Risk for Lung Cancer 
A microarray (LungCaGxE), based on Illumina BeadChip technology, was developed for high-resolution genotyping of genes that are candidates for involvement in environmentally driven aspects of lung cancer oncogenesis and/or tumor growth. The iterative array design process illustrates techniques for managing large panels of candidate genes and optimizing marker selection, aided by a new bioinformatics pipeline component, Tagger Batch Assistant. The LungCaGxE platform targets 298 genes and the proximal genetic regions in which they are located, using ∼13,000 DNA single nucleotide polymorphisms (SNPs), which include haplotype linkage markers with a minimum allele frequency of 1% and additional specifically targeted SNPs, for which published reports have indicated functional consequences or associations with lung cancer or other smoking-related diseases. The overall assay conversion rate was 98.9%; 99.0% of markers with a minimum Illumina design score of 0.6 successfully generated allele calls using genomic DNA from a study population of 1873 lung-cancer patients and controls.
doi:10.7171/jbt.13-2404-004
PMCID: PMC3792704  PMID: 24294113
genetic association; environmental exposures; Tagger Batch Assistant; LungCaGxE
5.  Synthesis of 13C4-labelled oxidized metabolites of the carcinogenic polycyclic aromatic hydrocarbon benzo[a]pyrene 
Tetrahedron  2012;68(35):10.1016/j.tet.2012.05.130.
Polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene (BaP), are ubiquitous environmental contaminants that are implicated in causing lung cancer. BaP is a component of tobacco smoke that is transformed enzymatically to active forms that interact with DNA. We reported previously development of a sensitive stable isotope dilution LC/MS method for analysis of BaP metabolites. We now report efficient syntheses of 13C4-BaP and the complete set of its 13C4-labelled oxidized metabolites needed as internal standards They include the metabolites not involved in carcinogenesis (Group A) and the metabolites implicated in initiation of cancer (Group B). The synthetic approach is novel, entailing use of Pd-catalyzed Suzuki, Sonogashira, and Hartwig cross-coupling reactions combined with PtCl2-catalyzed cyclization of acetylenic compounds. This synthetic method requires fewer steps, employs milder conditions, and product isolation is simpler than conventional methods of PAH synthesis. The syntheses of 13C4-BaP and 13C4-BaP-8-ol each require only four steps, and the 13C-atoms are all introduced in a single step. 13C4-BaP-8-ol serves as the synthetic precursor of all the oxidized metabolites of 13C-BaP implicated in initiation of cancer. The isotopic purities of the synthetic 13C4-BaP metabolites were estimated to be ≥99.9%.
doi:10.1016/j.tet.2012.05.130
PMCID: PMC3826453  PMID: 24244053
Benzo[a]pyrene (BaP); Carcinogenic polycyclic aromatic; hydrocarbons (PAHs); Synthesis of 13C4-labelled BaP; 13C4-Labelled oxidized metabolites of BaP; Enzymatic activation of PAH carcinogens; Synthesis of PAHs via Pd-catalyzed cross-coupling reactions
6.  Stereospecific reduction of 5β-reduced steroids by human ketosteroid reductases of the AKR (aldo-keto reductase) superfamily: role of AKR1C1–AKR1C4 in the metabolism of testosterone and progesterone via the 5β-reductase pathway 
The Biochemical journal  2011;437(1):10.1042/BJ20101804.
Active sex hormones such as testosterone and progesterone are metabolized to tetrahydrosteroids in the liver to terminate hormone action. One main metabolic pathway, the 5β-pathway, involves 5β-steroid reductase (AKR1D1, where AKR refers to the aldo-keto reductase superfamily), which catalyses the reduction of the 4-ene structure, and ketosteroid reductases (AKR1C1–AKR1C4), which catalyse the subsequent reduction of the 3-oxo group. The activities of the four human AKR1C enzymes on 5β-dihydrotestosterone, 5β-pregnane-3,20-dione and 20α-hydroxy-5β-pregnan-3-one, the intermediate 5β-dihydrosteroids on the 5β-pathway of testosterone and progesterone metabolism, were investigated. Product characterization by liquid chromatography–MS revealed that the reduction of the 3-oxo group of the three steroids predominantly favoured the formation of the corresponding 3α-hydroxy steroids. The stereochemistry was explained by molecular docking. Kinetic properties of the enzymes identified AKR1C4 as the major enzyme responsible for the hepatic formation of 5β-tetrahydrosteroid of testosterone, but indicated differential routes and roles of human AKR1C for the hepatic formation of 5β-tetrahydrosteroids of progesterone. Comparison of the kinetics of the AKR1C1–AKR1C4-catalysed reactions with those of AKR1D1 suggested that the three intermediate 5β-dihydrosteroids derived from testosterone and progesterone are unlikely to accumulate in liver, and that the identities and levels of 5β-reduced metabolites formed in peripheral tissues will be governed by the local expression of AKR1D1 and AKR1C1–AKR1C3.
doi:10.1042/BJ20101804
PMCID: PMC3825703  PMID: 21521174
dihydrosteroid; hydroxysteroid dehydrogenases; liquid-chromatography–MS (LC–MS); steroid metabolism; tetrahydrosteroid
7.  Cellular uptake and antiproliferative effects of 11-oxo-eicosatetraenoic acid[S] 
Journal of Lipid Research  2013;54(11):3070-3077.
Cyclooxygenases (COX) metabolize arachidonic acid (AA) to hydroxyeicosatetraenoic acids (HETE), which can then be oxidized by dehydrogenases, such as 15-hydroxyprostaglandin dehydrogenase (15-PGDH), to oxo-eicosatetraenoic acids (ETE). We have previously established that 11-oxo-eicosatetraenoic acid (oxo-ETE) and 15-oxo-ETE are COX-2/15-PGDH-derived metabolites. Stable isotope dilution (SID) chiral liquid chromatography coupled with electron capture atmospheric pressure chemical ionization (ECAPCI) single reaction monitoring (SRM) MS has been used to quantify uptake of 11-oxo-ETE and 15-oxo-ETE in both LoVo cells and human umbilical vein endothelial cells (HUVEC). Intracellular 11-oxo- and 15-oxo-ETE concentrations reached maximum levels within 1 h and declined rapidly, with significant quantitative differences in uptake between the LoVo cells and the HUVECs. Maximal intracellular concentrations of 11-oxo-ETE were 0.02 ng/4 × 105 cells in the LoVo cells and 0.58 ng/4 × 105 cells in the HUVECs. Conversely, maximal levels of 15-oxo-ETE were 0.21 ng/4 × 105 in the LoVo cells and 0.01 ng/4 × 105 in the HUVECs. The methyl esters of both 11-oxo- and 15-oxo-ETE increased the intracellular concentrations of the corresponding free oxo-ETEs by 3- to 8-fold. 11-oxo-ETE, 15-oxo-ETE, and their methyl esters inhibited proliferation in both HUVECs and LoVo cells at concentrations of 2–10 μM, with 11-oxo-ETE methyl ester being the most potent inhibitor. Cotreatment with probenecid, an inhibitor of multiple drug resistance transporters (MRP)1 and 4, increased the antiproliferative effect of 11-oxo-ETE methyl ester in LoVo cells and increased the intracellular concentration of 11-oxo-ETE from 0.05 ng/4 × 105 cells to 0.18 ng/4 × 105 cells. Therefore, this study has established that the COX-2/15-PGDH-derived eicosanoids 11-oxo- and 15-oxo-ETE enter target cells, that they inhibit cellular proliferation, and that their inhibitory effects are modulated by MRP exporters.
doi:10.1194/jlr.M040741
PMCID: PMC3793611  PMID: 23945567
cyclooxygenase; eicosanoids; cancer; exporters
8.  Antioxidant protection by PECAM-targeted delivery of a novel NADPH-oxidase inhibitor to the endothelium in vitro and in vivo 
Oxidant stress caused by pathological elevation of reactive oxygen species (ROS) production in the endothelial cells lining the vascular lumen is an important component of many vascular and pulmonary disease conditions. NADPH oxidase (NOX) activated by pathological mediators including angiotensin and cytokines is a major source of endothelial ROS. In order to intercept this pathological pathway, we have encapsulated an indirect NOX inhibitor, MJ33, into immunoliposomes (Ab-MJ33/IL) targeted to endothelial marker platelet endothelial cell adhesion molecule (PECAM-1). Ab-MJ33/IL, but not control IgG-MJ33/IL specifically bound to endothelium and attenuated angiotensin-induced ROS production in vitro and in vivo. Additionally, Ab-MJ33/IL inhibited endothelial expression of the inflammatory marker vascular cell adhesion molecule (VCAM) in cells and animals challenged with the cytokine TNF. Furthermore, Ab-MJ33/IL alleviated pathological disruption of endothelial permeability barrier function in cells exposed to vascular endothelial growth factor (VEGF) and in the lungs of mice challenged with lipopolysaccharide (LPS). Of note, the latter beneficial effect has been achieved both by prophylactic and therapeutic injection of Ab-MJ33/IL in animals. Therefore, specific suppression of ROS production by NOX in endothelium, attainable by Ab-MJ33/IL targeting, may help deciphering mechanisms of vascular oxidative stress and inflammation, and potentially improve treatment of these conditions.
doi:10.1016/j.jconrel.2012.08.031
PMCID: PMC3495982  PMID: 22974832
9.  Analysis of endogenous glutathione-adducts and their metabolites 
The ability to conduct validated analyses of glutathione (GSH)-adducts and their metabolites is critically important in order to establish whether they play a role in cellular biochemical or pathophysiological processes. The use of stable isotope dilution (SID) methodology in combination with liquid chromatography–tandem mass spectrometry (LC-MS/MS) provides the highest bioanalytical specificity possible for such analyses. Quantitative studies normally require the high sensitivity that can be obtained by the use of multiple reaction monitoring (MRM)/MS rather than the much less sensitive but more specific full scanning methodology. The method employs a parent ion corresponding to the intact molecule together with a prominent product ion that obtained by collision induced dissociation. Using SID LC-MRM/MS, analytes must have the same relative LC retention time to the heavy isotope internal standard established during the validation procedure, the correct parent ion and the correct product ion. This level of specificity cannot be attained with any other bioanalytical technique employed for biomarker analysis. This review will describe the application of SID LC-MR/MS methodology for the analysis of GSH-adducts and their metabolites. It will also discuss potential future directions for the use of this methodology for rigorous determination of their utility as disease and exposure biomarkers.
doi:10.1002/bmc.1374
PMCID: PMC3802536  PMID: 20017120
glutathione-adducts; stable isotopes; LC-MS; MRM; mercapturic acids; leukotrienes
10.  SILEC: a protocol for generating and using isotopically labeled coenzyme A mass spectrometry standards 
Nature protocols  2011;7(1):1-12.
Stable isotope labeling by essential nutrients in cell culture (SILEC) was recently developed to generate isotopically labeled coenzyme A (CoA) and short-chain acyl-CoA thioesters. This was accomplished by modifying the widely used technique of stable isotope labeling by amino acids in cell culture to include [13C315N]-pantothenate (vitamin B5), a CoA precursor, instead of the isotopically labeled amino acids. The lack of a de novo pantothenate synthesis pathway allowed for efficient and near-complete labeling of the measured CoA species. This protocol provides a step-by-step approach for generating stable isotope-labeled short-chain acyl-CoA internal standards in mammalian and insect cells as well as instructions on how to use them in stable isotope dilution mass spectrometric-based analyses. Troubleshooting guidelines, as well as a list of unlabeled and labeled CoA species, are also included. This protocol represents a prototype for generating stable isotope internal standards from labeled essential nutrients such as pantothenate. The generation and use of SILEC standards takes approximately 2–3 weeks.
doi:10.1038/nprot.2011.421
PMCID: PMC3802537  PMID: 22157971
11.  Synthesis of 13C2-Benzo[a]pyrene and its 7,8-Dihydrodiol and 7,8-Dione Implicated as Carcinogenic Metabolites 
Tetrahedron letters  2008;49(29-30):4531-4533.
Synthesis of the 13C2-labelled analogues of the carcinogenic polycyclic aromatic hydrocarbon benzo[a]pyrene and its active metabolites are described. The method entails Pd-catalyzed Suzuki-Miyaura coupling of a naphthalene boronic acid with 2-bromobenzene-1,3-dialdehyde followed by Wittig reaction of the product with 13CH2=PPh3.
doi:10.1016/j.tetlet.2008.05.033
PMCID: PMC3804341  PMID: 24155502
12.  Development of a Genotyping Microarray for Studying the Role of Gene-Environment Interactions in Risk for Lung Cancer 
A microarray (LungCaGxE), based on Illumina BeadChip technology, was developed for high-resolution genotyping of genes that are candidates for involvement in environmentally driven aspects of lung cancer oncogenesis and/or tumor growth. The iterative array design process illustrates techniques for managing large panels of candidate genes and optimizing marker selection, aided by a new bioinformatics pipeline component, Tagger Batch Assistant. The LungCaGxE platform targets 298 genes and the proximal genetic regions in which they are located, using ∼13,000 DNA single nucleotide polymorphisms (SNPs), which include haplotype linkage markers with a minimum allele frequency of 1% and additional specifically targeted SNPs, for which published reports have indicated functional consequences or associations with lung cancer or other smoking-related diseases. The overall assay conversion rate was 98.9%; 99.0% of markers with a minimum Illumina design score of 0.6 successfully generated allele calls using genomic DNA from a study population of 1873 lung-cancer patients and controls.
doi:10.7171/jbt.13-2404-004
PMCID: PMC3792704  PMID: 24294113
genetic association; environmental exposures; Tagger Batch Assistant; LungCaGxE
13.  Liquid chromatography-mass spectrometry of pre-ionized Girard P derivatives for quantifying estrone and its metabolites in serum from postmenopausal women 
An ultrasensitive stable isotope dilution liquid chromatography/selected reaction monitoring/mass spectrometry (LC-SRM/MS) assay has been developed for serum estrone, 16α-hydroxyestrone, 4-methoxyestrone, and 2-methoxyestrone. The enhanced sensitivity was obtained by the use of Girard P (GP) pre-ionized derivatives coupled with microflow LC. The limit of detection for each estrogen using 0.5 mL of serum was 0.156 pg/mL and linear standard curves were obtained up to 20 pg/mL. Serum samples from 20 postmenopausal women (10 lifetime non-smokers and 10 current smokers) were analyzed using this new assay. Mean serum concentrations of estrone and 2-methoxyestrone were 14.06 pg/mL (± 1.56 pg/mL) and 3.30 pg/mL (± 1.00 pg/mL), respectively, for the 20 subjects enrolled in the study. The mean estrone concentration determined by our ultrasensitive and highly specific assay was significantly lower than that reported for the control groups in most previous breast cancer studies of postmenopausal women. In addition (and contrary to many reports) serum 16α-hydroxyestrone was not detected in any of the subjects, and 4-methoxyestrone was detected in only one of the subjects. Furthermore, there were no significant differences in the mean serum concentrations of estrone and 2-methoxyestrone or the ratio of serum 2-methoxyestrone to estrone between the non-smoking and smoking groups. Interestingly, the one subject with measurable serum 4-methoxyestrone (2.3 pg/mL) had the lowest estrone and 2-methoxyestrone concentrations. Using this assay it will now be possible to obtain definitive information on the levels of serum estrone, 4-methoxyestrone, and 2-methoxyestrone in studies of cancer risk using small serum volumes available from previous epidemiology studies.
doi:10.1002/rcm.4982
PMCID: PMC3732066  PMID: 21488127
estrone; 16α-hydroxyestrone; 4-methoxyestrone; 2-methoxyestrone; LC-MS; stable isotopes
14.  Quantitation of Benzo[a]pyrene Metabolic Profiles in Human Bronchoalveolar H358) Cells by Stable Isotope Dilution Liquid Chromatography-Atmospheric Chemical Ionization Mass Spectrometry 
Chemical research in toxicology  2011;24(11):1905-1914.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants and are carcinogenic in multiple organs and species. Benzo[a]pyrene (B[a]P) is a representative PAH and has been studied extensively for its carcinogenicity and toxicity. B[a]P itself is chemically inert and requires metabolic activation to exhibit its toxicity and carcinogenicity. Three major metabolic pathways have been well documented. The signature metabolites generated from the radical cation (peroxidase or monooxygenase mediated) pathway are B[a]P-1,6-dione and B[a]P-3,6-dione, the signature metabolite generated from the diol-epoxide (P450 mediated) pathway is B[a]P-r-7,t-8,t-9,c-10-tetrahydrotetrol (B[a]P-tetrol-1) and the signature metabolite generated from the o-quinone (aldo-keto reductase mediated) pathway is B[a]P-7,8-dione. The contributions of these different metabolic pathways to cancer initiation and the exploitation of this information for cancer prevention are still under debate. With the availability of a library of [13C4]-labeled B[a]P metabolite internal standards, we developed a sensitive stable isotope dilution atmospheric pressure chemical ionization tandem mass spectrometry method to address this issue by quantitating B[a]P metabolites from each metabolic pathway in human lung cells. This analytical method represents a 500 fold increased sensitivity compared with a method using HPLC-radiometric detection. The limit of quantitation (LOQ) was determined to be 6 fmol on column for 3-hydroxybenzo[a]pyrene (3-OH-B[a]P), the generally accepted biomarker for B[a]P exposure. This high level of sensitivity and robustness of the method was demonstrated in a study of B[a]P metabolic profiles in human bronchoalveolar H358 cells induced or uninduced with the AhR ligand, 2,3,7,8-tetrachlorodibenzodioxin (TCDD). All the signature metabolites were detected and successfully quantitated. Our results suggest that all three metabolic pathways contribute equally in the overall metabolism of B[a]P in H358 cells with or without TCDD induction. The sensitivity of the method should permit the identification of cell-type differences in B[a]P activation and detoxication and could also be used for biomonitoring human exposure to PAH.
doi:10.1021/tx2002614
PMCID: PMC3725129  PMID: 21962213
aldo-keto reductase; benzo[a]pyrene; H358 cell; metabolome; P450 enzymes; stable isotope dilution mass spectrometry; TCDD induction
15.  Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis 
Human Molecular Genetics  2012;21(13):2899-2911.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motor neurons. Mutations in related RNA-binding proteins TDP-43, FUS/TLS and TAF15 have been connected to ALS. These three proteins share several features, including the presence of a bioinformatics-predicted prion domain, aggregation–prone nature in vitro and in vivo and toxic effects when expressed in multiple model systems. Given these commonalities, we hypothesized that a related protein, EWSR1 (Ewing sarcoma breakpoint region 1), might also exhibit similar properties and therefore could contribute to disease. Here, we report an analysis of EWSR1 in multiple functional assays, including mutational screening in ALS patients and controls. We identified three missense variants in EWSR1 in ALS patients, which were absent in a large number of healthy control individuals. We show that disease-specific variants affect EWSR1 localization in motor neurons. We also provide multiple independent lines of in vitro and in vivo evidence that EWSR1 has similar properties as TDP-43, FUS and TAF15, including aggregation–prone behavior in vitro and ability to confer neurodegeneration in Drosophila. Postmortem analysis of sporadic ALS cases also revealed cytoplasmic mislocalization of EWSR1. Together, our studies highlight a potential role for EWSR1 in ALS, provide a collection of functional assays to be used to assess roles of additional RNA-binding proteins in disease and support an emerging concept that a class of aggregation–prone RNA-binding proteins might contribute broadly to ALS and related neurodegenerative diseases.
doi:10.1093/hmg/dds116
PMCID: PMC3373238  PMID: 22454397
16.  Metabolism and Distribution of Benzo[a]pyrene-7,8-dione (B[a]P-7,8-dione) in Human Lung Cells by Liquid Chromatography Tandem Mass Spectrometry: Detection of an Adenine B[a]P-7,8-dione Adduct 
Chemical Research in Toxicology  2012;25(5):993-1003.
Benzo[a]pyrene-7,8-dione (B[a]P-7,8-dione) is produced in human lung cells by the oxidation of (±)-B[a]P-7,8-trans-dihydrodiol, which is catalyzed by aldo-keto reductases (AKRs). However, information relevant to the cell-based metabolism of B[a]P-7,8-dione is lacking. We studied the metabolic fate of 2 µM 1,3-[3H2]-B[a]P-7,8-dione in human lung adenocarcinoma A549 cells, human bronchoalveolar H358 cells and immortalized human bronchial epithelial HBEC-KT cells. In these three cell lines, 1,3-[3H2]-B[a]P-7,8-dione was rapidly consumed and radioactivity was distributed between the organic and aqueous phase of ethyl acetate-extracted media, as well as in the cell lysate pellets. After acidification of the media, several metabolites of 1,3-[3H2]-B[a]P-7,8-dione were detected in the organic phase of the media by high performance liquid chromatography-ultraviolet-radioactivity monitoring (HPLC-UV-RAM). The structures of B[a]P-7,8-dione metabolites varied in the cell lines and were identified as: B[a]P-7,8-dione conjugates with glutathione (GSH) and N-acetyl-L-cysteine (NAC), 8-O-mono-methylated-catechol, catechol mono-sulfate and mono-glucuronide, and mono-hydroxylated-B[a]P-7,8-dione by liquid chromatography–tandem mass spectrometry (LC-MS/MS). We also obtained evidence for the first time for the formation of an adenine adduct of B[a]P-7,8-dione. Among these metabolites, the identity of the GSH-B[a]P-7,8-dione and the NAC-B[a]P-7,8-dione were further validated by comparison to authentic synthesized standards. The pathways of B[a]P-7,8-dione metabolism in the three human lung cell lines are formation of GSH and NAC conjugates, reduction to the catechol followed by phase II conjugation reactions leading to its detoxification, mono-hydroxylation as well as formation of the adenine adduct.
doi:10.1021/tx200463s
PMCID: PMC3358497  PMID: 22480306
Methylation; sulfation; glucuronidation; catechol-O-methyltransferase; sulfotransferases; uridine 5'-diphospho-glucuronosyltransferases
17.  Relative Quantification of Serum Proteins from Pancreatic Ductal Adenocarcinoma Patients by Stable Isotope Dilution Liquid Chromatography-Mass Spectrometry 
Journal of Proteome Research  2012;11(3):1749-1758.
We report an innovative multiplexed liquid chromatography-multiple reaction monitoring/mass spectrometry (LC-MRM/MS)-based assay for rapidly measuring a large number of disease specific protein biomarkers in human serum. Furthermore, this approach uses stable isotope dilution methodology to reliably quantify candidate protein biomarkers. Human serum was diluted using a stable isotope labeled proteome (SILAP) standard prepared from the secretome of pancreatic cell lines, subjected to immunoaffinity removal of the most highly abundant proteins, trypsin digested, and analyzed by LC-MRM/MS. The method was found to be precise, linear, and specific for the relative quantification of 72 proteins when analyte response was normalized to the relevant internal standard (IS) from the SILAP. The method made it possible to determine statistically different concentrations for three proteins (cystatin M, IGF binding protein 7, and villin 2) in control and pancreatic cancer patient samples. This method proves the feasibility of using a SILAP standard in combination with stable isotope dilution LC-MRM/MS analysis of tryptic peptides to compare changes in the concentration of candidate protein biomarkers in human serum.
doi:10.1021/pr201011f
PMCID: PMC3292696  PMID: 22264027
SILAC; SILAP; immunoaffinity depletion; tryptic digestion; LC-MS/MS; serum biomarkers
18.  Multidrug Resistance Protein (MRP) 4 Attenuates Benzo[a]Pyrene-Mediated DNA-adduct Formation in Human Bronchoalveolar H358 Cells 
Toxicology Letters  2011;209(1):58-66.
Multi-drug resistance protein (MRP) 4, an ATP-binding cassette (ABC) transporter, has broad substrate specificity. It facilitates the transport of bile salt conjugates, conjugated steroids, nucleoside analogs, eicosanoids, and cardiovascular drugs. Recent studies in liver carcinoma cells and hepatocytes showed that MRP4 expression is regulated by the aryl hydrocarbon receptor (AhR) and nuclear factor E2-related factor 2 (Nrf2). The AhR has particular importance in the lung and is most commonly associated with the up-regulation of cytochrome P-450 (CYP)-mediated metabolism of benzo[a]pyrene (B[a]P) to reactive intermediates. Treatment of H358, human bronchoalveolar, cells with 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) or (−)-benzo[a]pyrene-7,8-dihydro-7,8-diol (B[a]P-7,8-dihydrodiol), the proximate carcinogen of B[a]P, revealed that MRP4 expression was increased compared to control. This suggested that MRP4 expression might contribute to the paradoxical decrease in (+)-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene-2′-deoxyguanosine ((+)-anti-trans-B[a]PDE-dGuo) DNA-adducts observed in TCDD-treated H358 cells. We have now found that decreased MRP4 expression induced by a short hairpin RNA (shRNA), or chemical inhibition with probenecid, increased (+)-anti-trans-B[a]PDE-dGuo formation in cells treated with (−)-B[a]P-7,8-dihydrodiol, but not the ultimate carcinogen (+)-anti-trans-B[a]PDE. Thus, up-regulation of MRP4 increased cellular efflux of (−)-B[a]P-7,8-dihydrodiol, which attenuated DNA-adduct formation. This is the first report identifying a specific MRP efflux transporter that decreases DNA damage arising from an environmental carcinogen.
doi:10.1016/j.toxlet.2011.11.021
PMCID: PMC3256298  PMID: 22155354
benzopyrene; environmental carcinogen; LC-MS; aryl hydrocarbon receptor
19.  Frontotemporal dementia–amyotrophic lateral sclerosis syndrome locus on chromosome 16p12.1–q12.2: genetic, clinical and neuropathological analysis 
Acta Neuropathologica  2013;125(4):523-533.
Numerous families exhibiting both frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) have been described, and although many of these have been shown to harbour a repeat expansion in C9ORF72, several C9ORF72-negative FTD-ALS families remain. We performed neuropathological and genetic analysis of a large European Australian kindred (Aus-12) with autosomal dominant inheritance of dementia and/or ALS. Affected Aus-12 members developed either ALS or dementia; some of those with dementia also had ALS and/or extrapyramidal features. Neuropathology was most consistent with frontotemporal lobar degeneration with type B TDP pathology, but with additional phosphorylated tau pathology consistent with corticobasal degeneration. Aus-12 DNA samples were negative for mutations in all known dementia and ALS genes, including C9ORF72 and FUS. Genome-wide linkage analysis provided highly suggestive evidence (maximum multipoint LOD score of 2.9) of a locus on chromosome 16p12.1–16q12.2. Affected individuals shared a chromosome 16 haplotype flanked by D16S3103 and D16S489, spanning 37.9 Mb, with a smaller suggestive disease haplotype spanning 24.4 Mb defined by recombination in an elderly unaffected individual. Importantly, this smaller region does not overlap with FUS. Whole-exome sequencing identified four variants present in the maximal critical region that segregate with disease. Linkage analysis incorporating these variants generated a maximum multipoint LOD score of 3.0. These results support the identification of a locus on chromosome 16p12.1–16q12.2 responsible for an unusual cluster of neurodegenerative phenotypes. This region overlaps with a separate locus on 16q12.1–q12.2 reported in an independent ALS family, indicating that this region may harbour a second major locus for FTD-ALS.
Electronic supplementary material
The online version of this article (doi:10.1007/s00401-013-1078-9) contains supplementary material, which is available to authorized users.
doi:10.1007/s00401-013-1078-9
PMCID: PMC3611035  PMID: 23338750
Frontotemporal dementia; Amyotrophic lateral sclerosis; Motor neuron disease; Corticobasal degeneration; Tau; TDP-43
20.  Effects of 21 days of varenicline versus placebo on smoking behaviors and urges among non-treatment seeking smokers 
Varenicline promotes smoking cessation and reduces urges to smoke. However, the mechanisms associated with these effects and their time course are not well characterized. One mechanism may be extinction, but the duration of the current dosing protocol may not be sufficient. We examined the effect of extended pre-treatment with varenicline on smoking behavior among 17 non-treatment seeking adult smokers. Using a within-subjects, double-blind, placebo-controlled crossover design, participants received standard dosing of varenicline for 21 days, followed by a 14-day washout period and 21 days of placebo; order counterbalanced. Cigarettes per day (CPD), smoking topography, smoking urges (QSU), and side effects were assessed every three days. Biomarkers (e.g. nicotine metabolites) were collected on days 1, 7, and 21. There was a significant drug by time interaction indicating a reduction in CPD during varenicline phase (between days 10–21), but no reduction during placebo. Varenicline also led to reductions in nicotine metabolites and urges to smoke. Among this sample of non-treatment seeking smokers, varenicline significantly reduced smoking behavior. Results have important treatment implications because changes in CPD and craving did not occur until after the typical one-week run-up period. This suggests that a longer duration of pre-treatment may be beneficial for some smokers.
doi:10.1177/0269881112449397
PMCID: PMC3526838  PMID: 22695488
Cigarette smoking; varenicline; nicotine; positive reinforcement; smoking cessation
21.  Synthesis of Phenol and Quinone Metabolites of Benzo[a]pyrene, a Carcinogenic Component of Tobacco Smoke Implicated in Lung Cancer 
The Journal of organic chemistry  2009;74(2):597-604.
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants produced in the combustion of organic matter. PAHs are present in automobile exhaust and tobacco smoke, and they have recently been designated as human carcinogens. Current evidence indicates that PAHs are activated enzymatically to mutagenic metabolites that interact with DNA. There is evidence for three pathways of activation, the diol epoxide path, the radical-cation path, and the quinone path. The relative importance of these paths for human lung cancer has not been established. We now report syntheses of the principal phenol and quinone isomers of the prototype PAH carcinogen benzo[a]pyrene (BP) that are known or are suspected to be formed as metabolites of BP in human bronchoalveolar cells. The methods of synthesis were designed to be adaptable to preparation of the 13C-labelled analogues of the BP metabolites. These compounds are needed as standards for sensitive LC-MS/MS methods for analysis of BP metabolites formed in lung cells. Efficient novel syntheses of the 1-, 3-, 6-, 9-, and 12-BP phenols, and the BP 1,6-, 3,6-, 6,12-, and 9,10-quinones are now reported. The syntheses of the BP phenols (except 6-HO-BP) involve in the key steps Pd-catalyzed Suzuki-Miyaura cross-coupling of a naphthalene boronate ester with a substituted aryl bromide or triflate ester. The BP quinones were synthesized from the corresponding BP phenols by direct oxidation with the hypervalent iodine reagents IBX or TBI. These reagents exhibited different regiospecificities. IBX oxidation of the 7- and 9- BP phenols provided the ortho-quinone isomers (BP 7,8-, and 9.10-dione), whereas TBI oxidation of the 1-, 3-, and 12-BP phenols furnished BP quinone isomers with carbonyl functions in separate rings (BP 1,6-, 3,6-, and 6,12-dione).
doi:10.1021/jo801864m
PMCID: PMC3418794  PMID: 19132942
22.  Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis 
Nature  2011;475(7354):106-109.
Reactive oxygen species (ROS) are mutagenic and may thereby promote cancer1. Normally, ROS levels are tightly controlled by an inducible antioxidant program that responds to cellular stressors and is predominantly regulated by the transcription factor Nrf2 and its repressor protein Keap12-5. In contrast to the acute physiological regulation of Nrf2, in neoplasia there is evidence for increased basal activation of Nrf2. Indeed, somatic mutations that disrupt the Nrf2-Keap1 interaction to stabilize Nrf2 and increase the constitutive transcription of Nrf2 target genes were recently identified, suggesting that enhanced ROS detoxification and additional Nrf2 functions may in fact be pro-tumorigenic6. Here, we investigated ROS metabolism in primary murine cells following the expression of endogenous oncogenic alleles of K-Ras, B-Raf and Myc, and find that ROS are actively suppressed by these oncogenes. K-RasG12D, B-RafV619E and MycERT2 each increased the transcription of Nrf2 to stably elevate the basal Nrf2 antioxidant program and thereby lower intracellular ROS and confer a more reduced intracellular environment. Oncogene-directed increased expression of Nrf2 is a novel mechanism for the activation of the Nrf2 antioxidant program, and is evident in primary cells and tissues of mice expressing K-RasG12D and B-RafV619E, and in human pancreatic cancer. Furthermore, genetic targeting of the Nrf2 pathway impairs K-RasG12D-induced proliferation and tumorigenesis in vivo. Thus, the Nrf2 antioxidant and cellular detoxification program represents a previously unappreciated mediator of oncogenesis.
doi:10.1038/nature10189
PMCID: PMC3404470  PMID: 21734707
23.  A new liquid chromatography/mass spectrometry method for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in urine 
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a carcinogenic nitrosamine produced upon curing tobacco. It is present in tobacco smoke and undergoes metabolism to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in the lungs. NNAL undergoes further uridine diphosphate glucuronosyltransferase (UGT)-mediated metabolism to give N- and O-glucuronide metabolites, which together with free (non-conjugated) NNAL are then excreted in the urine. The ability to conduct validated analyses of free and conjugated NNAL in human urine is important in order to assess inter-individual differences in lung cancer risk from exposure to cigarette smoke. The use of stable isotope dilution (SID) methodology in combination with liquid chromatography/multiple reaction monitoring/mass spectrometry (LC/MRM-MS) provides the highest bioanalytical specificity possible for such analyses. We describe a novel derivatization procedure, which results in the formation of a pre-ionized N-propyl-NNAL derivative. The increased LC/MS sensitivity arising from this derivative then makes it possible to analyze free NNAL in only 0.25 mL urine. This substantial reduction in urine volume when compared with other methods that have been developed will help preserve the limited amounts of stored urine samples that are available from on-going longitudinal biomarker studies. The new high sensitivity SID LC/MRM-MS assay was employed to determine free and conjugated NNAL concentrations in urine samples from 60 individual disease-free smokers. Effects of inter-individual differences in urinary creatinine clearance on NNAL concentrations were then assessed and three metabolizer phenotypes were identified in the 60 subjects from the ratio of urinary NNAL glucuronides/free NNAL. Poor metabolizers (PMs, 14 subjects) with a ratio of NNAL glucuronides/free NNAL <2 (mean = 1.3), intermediate metabolizers (IMs, 36 subjects) with a ratio between 2 and 5 (mean = 3.4), and extensive metabolizers (EMs, 10 subjects) with a ratio >5 (mean = 11.1).
doi:10.1002/rcm.4824
PMCID: PMC3348551  PMID: 21154658
24.  Analysis of epoxyeicosatrienoic acids by chiral liquid chromatography/electron capture atmospheric pressure chemical ionization mass spectrometry using [13C]-analog internal standards 
The metabolism of arachidonic acid (AA) to epoxyeicosatrienoic acids (EETs) is thought to be mediated primarily by the cytochromes P450 (P450s) from the 2 family (2C9, 2C19, 2D6, and 2J2). In contrast, P450s of the 4 family are primarily involved in omega oxidation of AA (4A11 and 4A22). The ability to determine enantioselective formation of the regioisomeric EETs is important in order to establish their potential biological activities and to asses which P450 isoforms are involved in their formation. It has been extremely difficult to analyze individual EET enantiomers in biological fluids because they are present in only trace amounts and they are extremely difficult to separate from each other. In addition, the deuterium-labeled internal standards that are commonly used for stable isotope dilution liquid chromatography/mass spectrometry (LC/MS) analyses have different LC retention times when compared with the corresponding protium forms. Therefore, quantification by LC/MS-based methodology can be compromised by differential suppression of ionization of the closely eluting isomers. We report the preparation of [13C20]-EET analog internal standards and the use of a validated high-sensitivity chiral LC/electron capture atmospheric pressure chemical ionization (ECAPCI)-MS method for the trace analysis of endogenous EETs as their pentafluorobenzyl (PFB) ester derivatives. The assay was then used to show the exquisite enantioselectivity of P4502C19-, P4502D6-, P4501A1-, and P4501B1-mediated conversion of AA into EETs and to quantify the enantioselective formation of EETs produced by AA metabolism in a mouse epithelial hepatoma (Hepa) cell line.
doi:10.1002/rcm.4760
PMCID: PMC3348553  PMID: 20972997
25.  Analysis of the Human Pancreatic Stellate Cell Secreted Proteome 
Pancreas  2011;40(4):557-566.
Objective
Pancreatic stellate cells (PSCs) are important players in pancreatic fibrosis and are major contributors to the extracellular matrix proteins observed with the stromal response characteristic of pancreatic ductal adenocarcinoma (PDAC). PSCs are also believed to secrete soluble factors that promote tumor progression, however no comprehensive analysis of the PSC proteome in either the quiescent or activated state has been reported.
Methods
Using two-dimensional tandem mass spectrometry and the RLT-PSC cell line, we present the first comprehensive study describing and comparing the quiescent and activated human PSC secreted proteomes.
Results
Very few proteins are secreted in the quiescent state. In stark contrast, activated PSCs secreted a vast array of proteins. Many of these proteins differed from those secreted by PDAC derived cell lines. Proteins associated with wound healing, proliferation, apoptosis, fibrosis and invasion were characterized. Selected proteins were verified in human tissue samples from PDAC, dysplastic pancreas, and normal pancreas using Western blot analysis and immunohistochemical staining.
Conclusions
Our study represents the first comprehensive analysis of proteins secreted by PSCs. These findings lay the foundation for characterizing PSC derived proteins involved in stroma-tumor interactions and the promotion of pancreatitis and PDAC.
doi:10.1097/MPA.0b013e318214efaf
PMCID: PMC3086313  PMID: 21499210
Pancreatic cancer; pancreatic stellate cells; secretome; tumor microenvironment; pancreatitis; RLT-PSC

Results 1-25 (65)