Search tips
Search criteria

Results 1-25 (98)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Glycosylation of Immunoglobulin G: Role of Genetic and Epigenetic Influences 
PLoS ONE  2013;8(12):e82558.
To determine the extent to which genetic and epigenetic factors contribute to variations in glycosylation of immunoglobulin G (IgG) in humans.
76  N-glycan traits in circulating IgG were analyzed by UPLC in 220 monozygotic and 310 dizygotic twin pairs from TwinsUK. A classical twin study design was used to derive the additive genetic, common and unique environmental components defining the variance in these traits. Epigenome-wide association analysis was performed using the Illumina 27k chip.
51 of the 76 glycan traits studied have an additive genetic component (heritability, h2)≥  0.5. In contrast, 12 glycan traits had a low genetic contribution (h2<0.35). We then tested for association between methylation levels and glycan levels (P<2 x10-6). Among glycan traits with low heritability probe cg08392591 maps to a CpG island 5’ from the ANKRD11 gene, a p53 activator on chromosome 16. Probe cg26991199 maps to the SRSF10 gene involved in regulation of RNA splicing and particularly in regulation of splicing of mRNA precursors upon heat shock. Among those with high heritability we found cg13782134 (mapping to the NRN1L gene) and cg16029957 mapping near the QPCT gene to be array-wide significant. The proportion of array-wide epigenetic associations was significantly larger (P<0.005) among glycans with low heritability (42%) than in those with high heritability (6.2%).
Glycome analyses might provide a useful integration of genetic and non-genetic factors to further our understanding of the role of glycosylation in both normal physiology and disease.
PMCID: PMC3855797  PMID: 24324808
2.  Conditional testing of multiple variants associated with bone mineral density in the FLNB gene region suggests that they represent a single association signal 
BMC Genetics  2013;14:107.
Low bone mineral density (BMD) is a primary risk factor for osteoporosis and is a highly heritable trait, but appears to be influenced by many genes. Genome-wide linkage studies have highlighted the chromosomal region 3p14-p22 as a quantitative trait locus for BMD (LOD 1.1 - 3.5). The FLNB gene, which is thought to have a role in cytoskeletal actin dynamics, is located within this chromosomal region and presents as a strong candidate for BMD regulation. We have previously identified significant associations between four SNPs in the FLNB gene and BMD in women. We have also previously identified associations between five SNPs located 5' of the transcription start site (TSS) and in intron 1 of the FLNB gene and expression of FLNB mRNA in osteoblasts in vitro. The latter five SNPs were genotyped in this study to test for association with BMD parameters in a family-based population of 769 Caucasian women.
Using FBAT, significant associations were seen for femoral neck BMD Z-score with the SNPs rs11720285, rs11130605 and rs9809315 (P = 0.004 – 0.043). These three SNPs were also found to be significantly associated with total hip BMD Z-score (P = 0.014 – 0.026). We then combined the genotype data for these three SNPs with the four SNPs we previously identified as associated with BMD and performed a conditional analysis to determine whether they represent multiple independent associations with BMD. The results from this analysis suggested that these variants represent a single association signal.
The SNPs identified in our studies as associated with BMD appear to be part of a single association signal between the FLNB gene and BMD in our data. FLNB is one of several genes located in 3p14-p22 that has been identified as significantly associated with BMD in Caucasian women.
PMCID: PMC3818969  PMID: 24176111
Bone mineral density; Filamin B; SNP; Osteoporosis
3.  A genomewide perspective of genetic variation in human metabolism 
Nature genetics  2009;42(2):137-141.
Serum metabolite concentrations provide a direct readout of biological processes in the human body, and are associated with disorders such as cardiovascular and metabolic diseases. Here we present a genome-wide association study with 163 metabolic traits using 1809 participants from the KORA population, followed up in the TwinsUK cohort with 422 participants. In eight out of nine replicated loci (FADS1, ELOVL2, ACADS, ACADM, ACADL, SPTLC3, ETFDH, SLC16A9) the genetic variant is located in or near enzyme or solute carrier coding genes, where the associating metabolic traits match the proteins’ function. Many of these loci are located in rate limiting steps of important enzymatic reactions. Use of metabolite concentration ratios as proxies for enzymatic reaction rates reduces the variance and yields robust statistical associations with p-values between 3×10−24 and 6.5×10−179. These loci explained 5.6% to 36.3% of the observed variance. For several loci, associations with clinically relevant parameters have previously been reported.
PMCID: PMC3773904  PMID: 20037589
4.  Cognitive Change in Older Women Using a Computerised Battery: A Longitudinal Quantitative Genetic Twin Study 
Behavior Genetics  2013;43:468-479.
Cognitive performance is known to change over age 45, especially processing speed. Studies to date indicate that change in performance with ageing is largely environmentally mediated, with little contribution from genetics. We estimated the heritability of a longitudinal battery of computerised cognitive tests including speed measures, using a classical twin design. 324 (127 MZ, 197 DZ) female twins, aged 43–73 at baseline testing, were followed-up after 10 years, using seven measures of the Cambridge Automated Neuropsychological Test battery, four of which were measures of response latency (speed). Results were analysed using univariate and bivariate structural equation modelling. Heritability of longitudinal change was found in 5 of the 7 tests, ranging from 21 to 41 %. The genetic aetiology was remarkably stable. The first principle component of change was strongly associated with age (p < 0.001) and heritable at 47 % (27–62 %). While estimates for heritability increased in all measures over time compared to baseline, these increases were statistically non-significant. This computerised battery showed significant heritability of age-related change in cognition. Focus on this form of change may aid the search for genetic pathways involved in normal and pre-morbid cognitive ageing.
Electronic supplementary material
The online version of this article (doi:10.1007/s10519-013-9612-z) contains supplementary material, which is available to authorized users.
PMCID: PMC3825151  PMID: 23990175
Processing speed; Heritability; Cognition; Aging; Twin study; Accelerating change
5.  The role of heredity in determining central retinal thickness 
The British Journal of Ophthalmology  2007;91(9):1143-1147.
To examine the relative roles of genetic and environmental factors in central retinal thickness, by performing a classical twin study.
310 subjects were recruited from the TwinsUK adult registry at St Thomas' Hospital. Optical coherence tomography (Zeiss, stratus OCT3) was used to measure the average retinal thickness in the central 1 mm diameter area. The covariance of central retinal thickness (CRT), within MZ and DZ twin pairs, was compared and genetic modelling techniques were used to determine the relative contributions of genes and environment to the variation in CRT observed in this population.
Main outcome measure
CRT (average retinal thickness in the central 1 mm diameter area, centred on the fovea).
The mean CRT of all subjects was 212.1 μm (range 165–277). CRT was statistically related to refractive error, with increasing myopia associated with a thinner CRT. CRT was more highly correlated within MZ twin pairs (r = 0.88) than with DZ twin pairs (r = 0.58), suggesting a genetic role. A model combining additive genetic and unique environmental factors provided the best fitting model and gave a heritability estimate of 0.90.
Genetic factors appear to play an important role in CRT, with a heritability estimate of 0.90.
PMCID: PMC1954930  PMID: 17360735
6.  Genomewide linkage scan of hand osteoarthritis in female twin pairs showing replication of quantitative trait loci on chromosomes 2 and 19 
Annals of the Rheumatic Diseases  2006;66(5):623-627.
Background and objective
Until recently, there has been little agreement between conflicting results of osteoarthritis (OA) linkage. The purpose of this study was to conduct a whole‐genome linkage scan to identify susceptibility loci for idiopathic hand OA in a large, population‐based sample of females.
Two OA‐related radiographic phenotypes DIP (distal interphalangeal joints)‐OA and Tot‐KL (Kellgren‐Lawrence score for both hands) chosen a priori were examined on 538 (269 pairs) monozygous and 1256 (628 pairs) dizygous (DZ) females. A genome‐wide scan using microsatellite markers spaced 10 cM apart was performed on 1028 DZ twins. First, the heritability of the two OA phenotypes was estimated. Next, multipoint linkage analysis was conducted using a modified version of the Haseman–Elston method in a generalised linear model.
Heritability for DIP‐OA and Tot‐KL was found to be 47.6% and 67.4%, respectively. A genome‐wide scan produced reliable evidence of significant linkage of DIP‐OA on chromosome 2 at 90 cM (logarithmic odds ratio (LOD) = 2.90) and for Tot‐KL on chromosome 19 at 65 cM (LOD = 4.26). These results are in agreement with data published previously. Several other significant linkage peaks were observed—for example, on chromosome 1 at 250 cM and on chromosome 3 at 30 cM—but were confirmed less reliably.
This is one of the largest OA linkage studies performed to date and provides clear evidence for linkage at two quantitative trait loci (on chromosome 2 at 90 cM and on chromosome 19 at 65 cM). As the results were robust and replicated in previous smaller studies, the fine mapping of these regions is a logical next step to pinpoint potential susceptibility gene(s) of interest.
PMCID: PMC1954638  PMID: 17127684
7.  Reduced telomere length in rheumatoid arthritis is independent of disease activity and duration 
Annals of the Rheumatic Diseases  2006;66(4):476-480.
Rheumatoid arthritis (RA) is associated with reduced lifespan and shortened telomere length in lymphocytes, but the mechanism underlying this is unclear. Telomere loss in white blood cells (WBC) is accelerated by oxidative stress and inflammation in vitro. It was postulated that the accelerated WBC telomere shortening in RA occurs as a result of exposure to chronic inflammation.
To measure telomere terminal restriction fragment (TRF) length in a large cohort of RA cases and healthy controls, to explore associations of TRF length with features of disease and with RA‐associated HLA‐DRB1 alleles.
WBC and TRF length were measured by Southern blot in DNA from 176 hospital‐based RA cases satisfying the 1987 American College of Rheumatology criteria and from 1151 controls. TRF length was compared between cases and controls, and the effects of disease duration, severity and HLA‐DRB1 alleles encoding the shared epitope (SE) were assessed.
Age‐ and sex‐adjusted TRF length was significantly shorter in RA cases compared with controls (p<0.001). There was no association between age‐ and sex‐adjusted TRF length and disease duration, C reactive protein or Larsen score. The presence of one or more SE‐encoding alleles was associated with reduced adjusted TRF length in RA cases (SE positive vs SE negative cases, p = 0.038), but not in controls.
The reduced TRF length in a large group of patients with RA compared with controls has been shown. The reduction is apparently independent of disease duration and markers of disease severity, but is influenced by HLA‐DRB1 genotype.
PMCID: PMC1856061  PMID: 17114192
8.  A Role for PACE4 in Osteoarthritis Pain: Evidence from Human Genetic Association and Null Mutant Phenotype 
Annals of the rheumatic diseases  2012;71(6):1042-1048.
To assess if genetic variation in the PACE4 gene, PCSK6, influences the risk for symptomatic knee OA.
Ten PCSK6 single nucleotide polymorphisms (SNP) were tested for association in a discovery cohort of radiographic knee OA (n= 156 asymptomatic and 600 symptomatic cases). Meta-analysis of the minor allele at rs900414 was performed in three additional independent cohorts (total n=674 asymptomatic and 2068 symptomatic). Pcsk6 knockout (KO) mice and wildtype C57BL/6 mice were compared in a battery of algesiometric assays, including hypersensitivity in response to intraplantar substance P; pain behaviours in response to intrathecal substance P; and pain behaviour in the abdominal constriction test.
In the discovery cohort of radiographic knee OA, an intronic SNP at rs900414 was significantly associated with symptomatic OA. Replication in three additional cohorts confirmed that the minor allele at rs900414 was consistently increased among asymptomatic compared to symptomatic radiographic knee OA cases in all four cohorts. A fixed-effects meta-analysis yielded an odds ratio =1.35 (95% CI 1.17, 1.56; p-value 4.3×10−5 and no significant between-study heterogeneity). Studies in mice revealed that Pcsk6 knockout (KO) mice were significantly protected against pain in a battery of algesiometric assays.
These results suggest that a variant in PCSK6 is strongly associated with protection against pain in knee OA, offering some insight as to why in the presence of the same structural damage, some individuals develop chronic pain and others are protected. Studies in Pcsk6 null mutant mice further implicate PACE4 in pain.
PMCID: PMC3603144  PMID: 22440827
Knee osteoarthritis; pain; PACE4; genetic association; SNP
9.  The relationship between DXA-based and anthropometric measures of visceral fat and morbidity in women 
Excess accumulation of visceral fat is a prominent risk factor for cardiovascular and metabolic morbidity. While computed tomography (CT) is the gold standard to measure visceral adiposity, this is often not possible for large studies - thus valid, but less expensive and intrusive proxy measures of visceral fat are required such as dual-energy X-ray absorptiometry (DXA). Study aims were to a) identify a valid DXA-based measure of visceral adipose tissue (VAT), b) estimate VAT heritability and c) assess visceral fat association with morbidity in relation to body fat distribution.
A validation sample of 54 females measured for detailed body fat composition - assessed using CT, DXA and anthropometry – was used to evaluate previously published predictive models of CT-measured visceral fat. Based upon a validated model, we realised an out-of-sample estimate of abdominal VAT area for a study sample of 3457 female volunteer twins and estimated VAT area heritability using a classical twin study design. Regression and residuals analyses were used to assess the relationship between adiposity and morbidity.
Published models applied to the validation sample explained >80% of the variance in CT-measured visceral fat. While CT visceral fat was best estimated using a linear regression for waist circumference, CT body cavity area and total abdominal fat (R2 = 0.91), anthropometric measures alone predicted VAT almost equally well (CT body cavity area and waist circumference, R2 = 0.86). Narrow sense VAT area heritability for the study sample was estimated to be 58% (95% CI: 51-66%) with a shared familial component of 24% (17-30%). VAT area is strongly associated with type 2 diabetes (T2D), hypertension (HT), subclinical atherosclerosis and liver function tests. In particular, VAT area is associated with T2D, HT and liver function (alanine transaminase) independent of DXA total abdominal fat and body mass index (BMI).
DXA and anthropometric measures can be utilised to derive estimates of visceral fat as a reliable alternative to CT. Visceral fat is heritable and appears to mediate the association between body adiposity and morbidity. This observation is consistent with hypotheses that suggest excess visceral adiposity is causally related to cardiovascular and metabolic disease.
PMCID: PMC3769144  PMID: 23552273
Visceral fat; Adiposity; DXA; Type 2 diabetes; Hypertension; Subclinical atherosclerosis; Liver function
10.  Homozygous deletion of the UGT2B17 gene is not associated with osteoporosis risk in elderly Caucasian women 
Previously, homozygous deletion of the UGT2B17 gene has shown association with hip fracture. Using a high-throughput qRT-PCR assay, we genotyped UGT2B17 copy number variation (CNV) in 1,347 elderly Caucasian women and examined for effects on bone phenotypes. We found no evidence of association between UGT2B17 CNV and osteoporosis risk in this population.
Genetic studies of osteoporosis commonly examine SNPs in candidate genes or whole genome analyses, but insertions and deletions of DNA, collectively called CNV, also comprise a large amount of the genetic variability between individuals. Previously, homozygous deletion of the UGT2B17 gene in CNV 4q13.2, which encodes an enzyme that mediates the glucuronidation of steroid hormones, has shown association with the risk of hip fracture.
We used a quantitative real-time PCR assay for genotyping the UGT2B17 CNV in a well-characterized population study of 1,347 Caucasian women aged 75.2 ± 2.7 (mean ± SD) years, to assess the effect of the CNV on bone mass density (BMD) at the total hip site and osteoporosis risk.
The UGT2B17 CNV distribution was consistent with the expected Hardy-Weinberg distribution and not different from frequencies previously reported in a Caucasian population. Data from ANCOVA of age- and weight-adjusted BMD for UGT2B17 CNV genotype showed no significant difference between genotype groups. Individuals with homozygous or heterozygous deletion of the UGT2B17 gene showed no increased risk of incident fragility fracture.
These data suggest that quantitative real-time PCR is a rapid and efficient technique for determination of candidate CNVs, including the UGT2B17 CNV; however, we found no evidence of an effect of UGT2B17 CNV on osteoporosis risk in elderly Caucasian women.
PMCID: PMC3605783  PMID: 20878390
11.  Significant Differences in UK and US Female Bone Density Reference Ranges 
In the United Kingdom (UK) T- and Z-scores are usually calculated using reference ranges derived from United States (US) populations. In the UK arm of a recent randomised trial (IBIS-II) substantially fewer women than expected were recruited into the osteopenic (-2.5 < T-score < −1.0) and osteoporotic (T-score < −2.5) arms of the study. Comparison with data from two independent studies showed that UK women aged > 45 years with a typical body mass index of 28 kg m−2 have spine and hip BMD 0.6 SD higher than their US counterparts.
Dual energy X-ray absorptiometry (DXA) is widely used for the diagnosis of osteoporosis and to investigate the effect of pharmacological treatments on bone mineral density (BMD). In both routine and research settings it is important that DXA results are correctly interpreted.
Z-scores for the first 650 UK Caucasian women enrolled in the IBIS-II study were compared with data from two independent studies of unrelated, unselected UK Caucasian women: (1) 2382 women aged 18 to 79 recruited to the Twins UK adult twin registry; (2) 431 women aged 21 to 84 with no risk factors for osteoporosis recruited at Guy’s Hospital. All DXA measurements were performed on Hologic densitometers. Subjects were divided into six age bands and Z-scores calculated using the manufacturer’s US reference range for the spine and the NHANES III reference range for the femoral neck and total hip.
The overall mean Z-scores for the IBIS-II, Twin and Guy’s groups were: spine: 0.61, 0.29, 0.33; femoral neck: 0.42, 0.36, 0.45; total hip: 0.65, 0.38, 0.39 (all p < 0.001 compared with the expected value of 0). The mean body weight of subjects in the three studies was 74.4, 65.5 and 65.4 kg respectively. Analysis revealed a highly significant relationship between Z-score and weight at each BMD site with a slope of 0.03 kg−1.
In general US spine and hip reference ranges are not suitable for the calculation of Z-scores in UK women. For some research study designs the differences may significantly influence the pattern of subject recruitment.
PMCID: PMC3605787  PMID: 20063090
Dual energy X-ray absorptiometry; Bone mineral density; Z-scores; Reference ranges; body weight
12.  The Heritability of Macular Response to Supplemental Lutein and Zeaxanthin: A Classic Twin Study 
Antioxidant supplements may reduce age-related macular degeneration (AMD) progression. The macular carotenoids are of particular interest because of their biochemical, optical, and anatomic properties. This classic twin study was designed to determine the heritability of macular pigment (MP) augmentation in response to supplemental lutein (L) and zeaxanthin (Z).
A total of 322 healthy female twin volunteers, aged 16–50 years (mean 40 ± 8.7) was enrolled in a prospective, nonrandomized supplement study. Macular pigment optical density (MPOD) measurements using two techniques (2-wavelength fundus autofluorescence [AF] and heterochromatic flicker photometry [HFP]), and serum concentrations of L and Z, were recorded at baseline, and at 3 and 6 months following daily supplementation with 18 mg L and 2.4 mg Z for a study period of 6 months.
At baseline, mean MPOD was 0.44 density units (SD 0.21, range 0.04–1.25) using HFP, and 0.41 density units (SD 0.15) using AF. Serum L and Z levels were raised significantly from baseline following 3 months' supplementation (mean increase 223% and 633%, respectively, P < 0.0001 for both), with no MPOD increase. After 6 months' supplementation, a small increase in MPOD was seen (mean increase 0.025 ± 0.16, P = 0.02, using HFP). Subdivision of baseline MPOD into quartiles revealed that baseline levels made no difference to the treatment effect. Genetic factors explained 27% (95% confidence interval [CI] 7–45) of the variation in MPOD response. Distribution profiles of macular pigment did not change in response to supplementation.
MPOD response to supplemental L and Z for a period of 6 months was small (an increase over baseline of 5.7% and 3.7%, measured using HFP and AF, respectively), and was moderately heritable. Further study is indicated to investigate the functional and clinical impact of supplementation with the macular carotenoids.
A classical twin study of 322 twins determined the heritability of macular pigment augmentation in response to 6 months' supplemental lutein and zeaxanthin. There was a small increase in macular pigment optical density, which was moderately heritable; genetic factors explained 27% of variance.
PMCID: PMC3410678  PMID: 22700713
13.  Identification of quantitative trait loci for fibrin clot phenotypes: The EuroCLOT study 
Fibrin makes up the structural basis of an occlusive arterial thrombus and variability in fibrin phenotype relates to cardiovascular risk. The aims of the current study from the EU consortium EuroCLOT were to 1) determine the heritability of fibrin phenotypes and 2) identify QTLs associated with fibrin phenotypes.
447 dizygotic (DZ) and 460 monozygotic (MZ) pairs of healthy UK Caucasian female twins and 199 DZ twin pairs from Denmark were studied. D-dimer, an indicator of fibrin turnover, was measured by ELISA and measures of clot formation, morphology and lysis were determined by turbidimetric assays. Heritability estimates and genome-wide linkage analysis were performed.
Estimates of heritability for d-dimer and turbidometric variables were in the range 17 - 46%, with highest levels for maximal absorbance which provides an estimate of clot density. Genome-wide linkage analysis revealed 6 significant regions with LOD>3 on 5 chromosomes (5, 6, 9, 16 and 17).
The results indicate a significant genetic contribution to variability in fibrin phenotypes and highlight regions in the human genome which warrant further investigation in relation to ischaemic cardiovascular disorders and their therapy.
PMCID: PMC3508477  PMID: 19150881
linkage; quantitative trait loci; twin; cardiovascular disease; thrombosis
14.  Copy number variation of the APC gene is associated with regulation of bone mineral density☆ 
Bone  2012;51(5):939-943.
Genetic studies of osteoporosis have commonly examined SNPs in candidate genes or whole genome analyses, but insertions and deletions of DNA, collectively called copy number variations (CNVs), also comprise a large amount of the genetic variability between individuals. Previously, SNPs in the APC gene have been strongly associated with femoral neck and lumbar spine volumetric bone mineral density in older men. In addition, familial adenomatous polyposis patients carrying heterozygous mutations in the APC gene have been shown to have significantly higher mean bone mineral density than age- and sex-matched controls suggesting the importance of this gene in regulating bone mineral density. We examined CNV within the APC gene region to test for association with bone mineral density.
DNA was extracted from venous blood, genotyped using the Human Hap610 arrays and CNV determined from the fluorescence intensity data in 2070 Caucasian men and women aged 47.0 ± 13.0 (mean ± SD) years, to assess the effects of the CNV on bone mineral density at the forearm, spine and total hip sites.
Data for covariate adjusted bone mineral density from subjects grouped by APC CNV genotype showed significant difference (P = 0.02–0.002). Subjects with a single copy loss of APC had a 7.95%, 13.10% and 13.36% increase in bone mineral density at the forearm, spine and total hip sites respectively, compared to subjects with two copies of the APC gene.
These data support previous findings of APC regulating bone mineral density and demonstrate that a novel CNV of the APC gene is significantly associated with bone mineral density in Caucasian men and women.
► Previously, SNPs in APC gene have been associated with volumetric BMD in older men. ► We examined CNV in the APC gene and found significant association with BMD in the TwinsUK cohort. ► The maximum difference between subjects with APC CNV and wild type was 13.4% at the total hip site. ► APC plays an important role in bone regulation via the Wnt signaling pathway.
PMCID: PMC3918860  PMID: 22884971
Bone mineral density; Osteoporosis; Copy number variation; APC; Association
15.  DNA methylation studies using twins: what are they telling us? 
Genome Biology  2012;13(10):172.
Recent studies have identified both heritable DNA methylation effects and differential methylation in disease-discordant identical twins. Larger sample sizes, replication, genetic-epigenetic analyses and longitudinal assays are now needed to establish the role of epigenetic variants in disease.
PMCID: PMC3491399  PMID: 23078798
Epigenetics; DNA methylation; twins; heritability; epigenome-wide association studies; EWAS
16.  DNA methylation profiling in breast cancer discordant identical twins identifies DOK7 as novel epigenetic biomarker 
Carcinogenesis  2012;34(1):102-108.
Using whole blood from 15 twin pairs discordant for breast cancer and high-resolution (450K) DNA methylation analysis, we identified 403 differentially methylated CpG sites including known and novel potential breast cancer genes. Confirming the results in an independent validation cohort of 21 twin pairs determined the docking protein DOK7 as a candidate for blood-based cancer diagnosis. DNA hypermethylation of the promoter region was also seen in primary breast cancer tissues and cancer cell lines. Hypermethylation of DOK7 occurs years before tumor diagnosis, suggesting a role as a powerful epigenetic blood-based biomarker as well as providing insights into breast cancer pathogenesis.
PMCID: PMC3534196  PMID: 23054610
17.  Targeted metabolomics profiles are strongly correlated with nutritional patterns in women 
Metabolomics  2012;9(2):506-514.
Nutrition plays an important role in human metabolism and health. Metabolomics is a promising tool for clinical, genetic and nutritional studies. A key question is to what extent metabolomic profiles reflect nutritional patterns in an epidemiological setting. We assessed the relationship between metabolomic profiles and nutritional intake in women from a large cross-sectional community study. Food frequency questionnaires (FFQs) were applied to 1,003 women from the TwinsUK cohort with targeted metabolomic analyses of serum samples using the Biocrates Absolute-IDQ™ Kit p150 (163 metabolites). We analyzed seven nutritional parameters: coffee intake, garlic intake and nutritional scores derived from the FFQs summarizing fruit and vegetable intake, alcohol intake, meat intake, hypo-caloric dieting and a “traditional English” diet. We studied the correlation between metabolite levels and dietary intake patterns in the larger population and identified for each trait between 14 and 20 independent monozygotic twins pairs discordant for nutritional intake and replicated results in this set. Results from both analyses were then meta-analyzed. For the metabolites associated with nutritional patterns, we calculated heritability using structural equation modelling. 42 metabolite nutrient intake associations were statistically significant in the discovery samples (Bonferroni P < 4 × 10−5) and 11 metabolite nutrient intake associations remained significant after validation. We found the strongest associations for fruit and vegetables intake and a glycerophospholipid (Phosphatidylcholine diacyl C38:6, P = 1.39 × 10−9) and a sphingolipid (Sphingomyeline C26:1, P = 6.95 × 10−13). We also found significant associations for coffee (confirming a previous association with C10 reported in an independent study), garlic intake and hypo-caloric dieting. Using the twin study design we find that two thirds the metabolites associated with nutritional patterns have a significant genetic contribution, and the remaining third are solely environmentally determined. Our data confirm the value of metabolomic studies for nutritional epidemiologic research.
Electronic supplementary material
The online version of this article (doi:10.1007/s11306-012-0469-6) contains supplementary material, which is available to authorized users.
PMCID: PMC3608890  PMID: 23543136
Metabolomics; Twins; Dietary pattern; Nutrition habits; Food questionnaires
18.  Interleukin-6 is a significant predictor of radiographic knee osteoarthritis: The Chingford study 
Arthritis and Rheumatism  2009;60(7):2037-2045.
There is a great need for identification of biomarkers that could improve the prediction of early osteoarthritis (OA). We undertook this study to determine whether circulating levels of interleukin-6 (IL-6), tumor necrosis factor α (TNFα), and C-reactive protein (CRP) can serve as useful markers of radiographic knee OA (RKOA) in a normal human population.
RKOA data were obtained from the cohort of the Chingford Study, a prospective population-based study of healthy, middle-aged British women. The RKOA-affected status of the subjects was assessed using the Kellgren/Lawrence (K/L) grade as determined on radiographs obtained at baseline (n = 908) and at 10 years and 15 years thereafter. Serum levels of CRP, IL-6, and TNFα were assayed at 5, 8, and 15 years, using high-sensitivity commercial assays. A K/L grade of ≥2 in either knee was used as the outcome measure. Statistical analyses included analysis of variance for repeated measurements and logistic regression models, together with longitudinal modeling of dichotomous responses.
During 15 years of followup, the prevalence of RKOA (K/L grade ≥2) increased from 14.7% to 48.7% (P < 0.00001 versus baseline). The body mass index (BMI) and circulating levels of CRP and IL-6 were consistently and significantly higher in subjects diagnosed as having RKOA. When multiple logistic regression was applied to the data, the variables of older age (P = 3.93 × 10−5), higher BMI at baseline (P = 0.0003), and increased levels of IL-6 at year 5 (P = 0.0129) were determined to be independent predictors of the appearance of RKOA at year 10. The results were fully confirmed using longitudinal modeling of repeated measurements of the data obtained at 3 visits. The odds ratio for RKOA in subjects whose IL-6 levels were in the fourth quartile of increasing levels (versus the first quartile) was 2.74 (95% confidence interval 1.94–3.87).
This followup study showed that individuals were more likely to be diagnosed as having RKOA if they had a higher BMI and increased circulating levels of IL-6. These results should stimulate more work on IL-6 as a potential therapeutic target.
PMCID: PMC2841820  PMID: 19565477
19.  Hearing Ability with Age in Northern European Women: A New Web-Based Approach to Genetic Studies 
PLoS ONE  2012;7(4):e35500.
Age-related hearing impairment (ARHI) affects 25–40% of individuals over the age of 65. Despite the high prevalence of this complex trait, ARHI is still poorly understood. We hypothesized that variance in hearing ability with age is largely determined by genetic factors. We collected audiologic data on females of Northern European ancestry and compared different audiogram representations. A web-based speech-to-noise ratio (SNR) hearing test was compared with pure-tone thresholds to see if we could determine accurately hearing ability on people at home and the genetic contribution to each trait compared. Volunteers were recruited from the TwinsUK cohort. Hearing ability was determined using pure-tone audiometry and a web-based hearing test. Different audiogram presentations were compared for age-correlation and reflection of audiogram shape. Using structural equation modelling based on the classical twin model the heritability of ARHI, as measured by the different phenotypes, was estimated and shared variance between the web-based SNR test and pure-tone audiometry determined using bivariate modelling. Pure-tone audiometric data was collected on 1033 older females (age: 41–86). 1970 volunteers (males and females, age: 18–85) participated in the SNR. In the comparison between different ARHI phenotypes the difference between the first two principle components (PC1–PC2) best represented ARHI. The SNR test showed a sensitivity and specificity of 89% and 80%, respectively, in comparison with pure-tone audiogram data. Univariate heritability estimates ranged from 0.70 (95% CI: 0.63–0.76) for (PC1–PC2) to 0.56 (95% CI: 0.48–0.63) for PC2. The genetic correlation of PC1–PC2 and SNR was −0.67 showing that the 2 traits share variances attributed to additive genetic factors. Hearing ability showed considerable heritability in our sample. We have shown that the SNR test provides a useful surrogate marker of hearing. This will enable a much larger sample to be collected at a fraction of the cost, facilitating future genetic association studies.
PMCID: PMC3340381  PMID: 22558162
20.  A Genome-Wide Association Study of Female Sexual Dysfunction 
PLoS ONE  2012;7(4):e35041.
Female sexual dysfunction (FSD) is an important but controversial problem with serious negative impact on women’s quality of life. Data from twin studies have shown a genetic contribution to the development and maintenance of FSD.
Methodology/Principal Findings
We performed a genome-wide association study (GWAS) on 2.5 million single-nucleotide polymorphisms (SNPs) in 1,104 female twins (25–81 years of age) in a population-based register and phenotypic data on lifelong sexual functioning. Although none reached conventional genome-wide level of significance (10×-8), we found strongly suggestive associations with the phenotypic dimension of arousal (rs13202860, P = 1.2×10−7; rs1876525, P = 1.2×10−7; and rs13209281 P = 8.3×10−7) on chromosome 6, around 500kb upstream of the locus HTR1E (5-hydroxytryptamine receptor 1E) locus, related to the serotonin brain pathways. We could not replicate previously reported candidate SNPs associated with FSD in the DRD4, 5HT2A and IL-1B loci.
We report the first GWAS of FSD symptoms in humans. This has pointed to several “risk alleles” and the implication of the serotonin and GABA pathways. Ultimately, understanding key mechanisms via this research may lead to new FSD treatments and inform clinical practice and developments in psychiatric nosology.
PMCID: PMC3324410  PMID: 22509378
21.  A Twin Study of Mitochondrial DNA Polymorphisms Shows that Heteroplasmy at Multiple Sites Is Associated with mtDNA Variant 16093 but Not with Zygosity 
PLoS ONE  2011;6(8):e22332.
The mitochondrial theory of ageing proposes that damage to mitochondria and diminished mitochondrial DNA (mtDNA) repair are major contributors to cellular dysfunction and age-related diseases. We investigate the prevalence of heteroplasmy in the mtDNA control region in buccal swab and blood derived samples for 178 women from the TwinsUK cohort (41 DZ pair 39 MZ pairs, 18 singletons, mean age 57.5 range 28–82) and its relationship to age, BMI and fasting insulin and glucose serum levels. The overall estimated prevalence of heteroplasmy for both tissues in the control region measured for 37 sites was 17%. The prevalence of heteroplasmy was higher among the older half of the study subjects than in the younger half (23% vs 10% p<0.03), primarily reflecting the increase in the prevalence of a heteroplasmic dinucleotide CA repeat in variable region II (VRII) with age. The VRII 523–524 heteroplasmic site (heteroplasmic in 25 subjects) was also associated with a decrease in BMI. In addition, concordance rates for common heteroplasmy were observed to be near complete for both dizygotic (DZ = 94%) and monozygotic twin pairs (MZ = 100%), consistent with previous reports that suggest variation in heteroplasmy rates between generations are determined by bottlenecks in maternal transmission of mitochondria. Differences in the prevalence of heteroplasmy were observed overall between samples derived from buccal swabs (19%) and blood (15%, p<0.04). These were particularly marked at position 16093 of hypervariable region I (HVI, 7% vs 0%, respectively, p<4×10−11). The presence of the C allele at position 16093 in blood was associated with the presence of heteroplasmy in buccal swabs at this position (p = 3.5×10−14) and also at VRII (p = 2×10−4) suggesting a possible predisposing role for this site in the accumulation of heteroplasmy. Our data indicate that BMI is potentially associated with control region heteroplasmy.
PMCID: PMC3153933  PMID: 21857921
22.  The Relationship between Retinal Arteriolar and Venular Calibers Is Genetically Mediated, and Each Is Associated with Risk of Cardiovascular Disease 
Retinal arteriolar and venular calibers have a high phenotypic correlation caused by a shared genetic correlation. Identifying vessel pleiotropic genes will elucidate the nature of vessel association with specific cardiovascular disease risk factors.
Retinal arteriolar and venular calibers are highly heritable and associated with cardiovascular disease. This study was designed to investigate the relative influence of genetic and environmental factors on the high phenotypic correlation (r = 0.59) between these two traits and to assess the shared and specific influence of established and novel cardiovascular disease risk factors on them.
A total of 1463 Caucasian female twins (706 monozygotic and 757 dizygotic), between 24 and 79 years of age, underwent retinal photography from which retinal arteriolar (mean, 153.75 ± 22.1 μm, SD) and venular (mean, 232.1 ± 36.6 μm) calibers were measured with semiautomated software. A bivariate heritability model was used to assess the genetic and environmental influences underlying both specific trait variance and the covariance between the vessel traits. The investigation was an assessment of phenotypic associations between retinal arteriolar and venular calibers and cardiovascular disease risk factors.
Additive genetic factors accounted for approximately three fourths of the covariance between retinal arteriolar and venular calibers within the cohort. This finding was replicated in a sample of 1981 twins from the Australian Twins Eye Study. The partial correlation showed that known risk factors accounted for only 5% of the covariance between arteriolar and venular calibers. Novel associations were found between venular caliber and β-cell function (P = 0.011) and insulin sensitivity (P = 0.002).
These results suggest that future gene-mapping studies may identify pleiotropic genetic variants influencing both retinal arteriolar and venular calibers. Genetic variants associated with retinal caliber and (risk factors for) cardiovascular disease should provide new etiologic insights into this complex disease.
PMCID: PMC3053116  PMID: 20926817
23.  Association between DHEAS and Bone Loss in Postmenopausal Women: A 15-Year Longitudinal Population-Based Study 
Calcified Tissue International  2011;89(4):295-302.
Our aim was to examine the association between serum dehydroepiandrosterone sulfate (DHEAS) at baseline and BMD change at the femoral neck (FN) and lumbar spine (LS) in postmenopausal women during a 15-year follow-up. All participants were from the Chingford Study. BMD at the FN and LS were measured eight times during the 15-year follow-up by dual-energy X-ray absorptiometry. DHEAS at baseline was measured using radioimmunoassay. Data on height, weight, and hormone-replacement therapy (HRT) status were obtained at each visit. Multilevel linear regression modeling was used to examine the association between longitudinal BMD change at the FN and LS and DHEAS at baseline. Postmenopausal women (n = 1,003) aged 45–68 years (mean 54.7) at baseline were included in the study. After adjustment for baseline age, estradiol, HRT, and BMI, BMD at the FN decreased on average 0.49% (95% CI 0.31–0.71%) per year; and the decline was slowed down by 0.028% per squared year. Increase of DHEAS (each micromole per liter) was associated with 0.49% less bone loss at the FN (95% CI 0.21–0.71%, P = 0.001). However, this strong association became slightly weaker over time. Similar but weaker results were obtained for LS BMD. Our data suggest that high serum DHEAS at baseline is associated with less bone loss at both FN and LS and this association diminishes over time. The nature of the association is unclear, but such an association implies that, in managing BMD loss, women might benefit from maintaining a high level of DHEAS.
PMCID: PMC3175043  PMID: 21789637
BMD; DHEAS; Osteoporosis; Longitudinal study; Postmenopausal
24.  A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium 
Soranzo, Nicole | Spector, Tim D | Mangino, Massimo | Kühnel, Brigitte | Rendon, Augusto | Teumer, Alexander | Willenborg, Christina | Wright, Benjamin | Chen, Li | Li, Mingyao | Salo, Perttu | Voight, Benjamin F | Burns, Philippa | Laskowski, Roman A | Xue, Yali | Menzel, Stephan | Altshuler, David | Bradley, John R | Bumpstead, Suzannah | Burnett, Mary-Susan | Devaney, Joseph | Döring, Angela | Elosua, Roberto | Epstein, Stephen | Erber, Wendy | Falchi, Mario | Garner, Stephen F | Ghori, Mohammed J R | Goodall, Alison H | Gwilliam, Rhian | Hakonarson, Hakon H | Hall, Alistair S | Hammond, Naomi | Hengstenberg, Christian | Illig, Thomas | König, Inke R | Knouff, Christopher W | McPherson, Ruth | Melander, Olle | Mooser, Vincent | Nauck, Matthias | Nieminen, Markku S | O’Donnell, Christopher J | Peltonen, Leena | Potter, Simon C | Prokisch, Holger | Rader, Daniel J | Rice, Catherine M | Roberts, Robert | Salomaa, Veikko | Sambrook, Jennifer | Schreiber, Stefan | Schunkert, Heribert | Schwartz, Stephen M | Serbanovic-Canic, Jovana | Sinisalo, Juha | Siscovick, David S. | Stark, Klaus | Surakka, Ida | Stephens, Jonathan | Thompson, John R | Völker, Uwe | Völzke, Henry | Watkins, Nicholas A | Wells, George A | Wichmann, H-Erich | Van Heel, David A | Tyler-Smith, Chris | Thein, Swee Lay | Kathiresan, Sekar | Perola, Markus | Reilly, Muredach P | Stewart, Alexandre F R | Erdmann, Jeanette | Samani, Nilesh J | Meisinger, Christa | Greinacher, Andreas | Deloukas, Panos | Ouwehand, Willem H | Gieger, Christian
Nature genetics  2009;41(11):1182-1190.
The number and volume of cells in the blood affect a wide range of disorders including cancer and cardiovascular, metabolic, infectious and immune conditions. We consider here the genetic variation in eight clinically relevant hematological parameters, including hemoglobin levels, red and white blood cell counts and platelet counts and volume. We describe common variants within 22 genetic loci reproducibly associated with these hematological parameters in 13,943 samples from six European population-based studies, including 6 associated with red blood cell parameters, 15 associated with platelet parameters and 1 associated with total white blood cell count. We further identified a long-range haplotype at 12q24 associated with coronary artery disease in 9,479 cases and 10,527 controls. We show that this haplotype demonstrates extensive disease pleiotropy, as it contains known risk loci for type 1 diabetes, hypertension and celiac disease and has been spread by a selective sweep specific to European and geographically nearby populations.
PMCID: PMC3108459  PMID: 19820697
25.  Arterial Stiffening Relates to Arterial Calcification But Not to Noncalcified Atheroma in Women 
Our aim was to examine the relationship of arterial stiffness to measures of atherosclerosis, arterial calcification, and bone mineral density (BMD); the heritability of these measures; and the degree to which they are explained by common genetic influences.
Arterial stiffening relates to arterial calcification, but this association could result from coexistent atherosclerosis. A reciprocal relationship between arterial stiffening/calcification and BMD could explain the association between cardiovascular morbidity and osteoporosis.
We examined, in 900 women from the Twins UK cohort, the relationship of carotid-femoral pulse wave velocity (cfPWV) to measures of atherosclerosis (carotid intima-media thickening; carotid/femoral plaque), calcification (calcified plaque [CP]; aortic calcification by computed tomography, performed in subsample of 40 age-matched women with low and high cfPWV), and BMD.
The cfPWV independently correlated with CP but not with intima-media thickness or noncalcified plaque. Total aortic calcium, determined by computed tomography, was significantly greater in subjects with high cfPWV (median Agatston score 450.4 compared with 63.2 arbitrary units in subjects with low cfPWV, p = 0.001). There was no independent association between cfPWV and BMD. Adjusted heritability estimates of cfPWV and CP were 0.38 (95% confidence interval: 0.19 to 0.59) and 0.61 (95% confidence interval: 0.04 to 0.83), respectively. Shared genetic factors accounted for 92% of the observed correlation (0.38) between cfPWV and CP.
These results suggest that the association between increased arterial stiffness and the propensity of the arterial wall to calcify is explained by a common genetic etiology and is independent of noncalcified atheromatous plaque and independent of BMD.
PMCID: PMC3919172  PMID: 21435518
arteriosclerosis; atherosclerosis; bone mineral density; calcification; ACE, additive genetic component (a2), common (c2), and unique (e2 incorporating measurement error) environment components; BMD, bone mineral density; cfPWV, carotid-femoral pulse wave velocity; CI, confidence interval; CP, calcified plaque; CT, computed tomography; CVD, cardiovascular disease; DZ, dizygotic twins; IMT, intima-media thickness; MAP, mean arterial pressure; MZ, monozygotic twins; PWV, pulse wave velocity

Results 1-25 (98)