PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-13 (13)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Preeclampsia and Blood Pressure Trajectory during Pregnancy in Relation to Vitamin D Status 
PLoS ONE  2016;11(3):e0152198.
Every tenth pregnancy is affected by hypertension, one of the most common complications and leading causes of maternal death worldwide. Hypertensive disorders in pregnancy include pregnancy-induced hypertension and preeclampsia. The pathophysiology of the development of hypertension in pregnancy is unknown, but studies suggest an association with vitamin D status, measured as 25-hydroxyvitamin D (25(OH)D). The aim of this study was to investigate the association between gestational 25(OH)D concentration and preeclampsia, pregnancy-induced hypertension and blood pressure trajectory. This cohort study included 2000 women. Blood was collected at the first (T1) and third (T3) trimester (mean gestational weeks 10.8 and 33.4). Blood pressure at gestational weeks 10, 25, 32 and 37 as well as symptoms of preeclampsia and pregnancy-induced hypertension were retrieved from medical records. Serum 25(OH)D concentrations (LC-MS/MS) in T1 was not significantly associated with preeclampsia. However, both 25(OH)D in T3 and change in 25(OH)D from T1 to T3 were significantly and negatively associated with preeclampsia. Women with a change in 25(OH)D concentration of ≥30 nmol/L had an odds ratio of 0.22 (p = 0.002) for preeclampsia. T1 25(OH)D was positively related to T1 systolic (β = 0.03, p = 0.022) and T1 diastolic blood pressure (β = 0.02, p = 0.016), and to systolic (β = 0.02, p = 0.02) blood pressure trajectory during pregnancy, in adjusted analyses. There was no association between 25(OH)D and pregnancy-induced hypertension in adjusted analysis. In conclusion, an increase in 25(OH)D concentration during pregnancy of at least 30 nmol/L, regardless of vitamin D status in T1, was associated with a lower odds ratio for preeclampsia. Vitamin D status was significantly and positively associated with T1 blood pressure and gestational systolic blood pressure trajectory but not with pregnancy-induced hypertension.
doi:10.1371/journal.pone.0152198
PMCID: PMC4811441  PMID: 27022948
2.  Sequences of Regressions Distinguish Nonmechanical from Mechanical Associations between Metabolic Factors, Body Composition, and Bone in Healthy Postmenopausal Women123 
The Journal of Nutrition  2016;146(4):846-854.
Background: There is increasing recognition of complex interrelations between the endocrine functions of bone and fat tissues or organs.
Objective: The objective was to describe nonmechanical and mechanical links between metabolic factors, body composition, and bone with the use of graphical Markov models.
Methods: Seventy postmenopausal women with a mean ± SD age of 62.3 ± 3.7 y and body mass index (in kg/m2) of 24.9 ± 3.8 were recruited. Bone outcomes were peripheral quantitative computed tomography measures of the distal and diaphyseal tibia, cross-sectional area (CSA), volumetric bone mineral density (vBMD), and cortical CSA. Biomarkers of osteoblast and adipocyte function were plasma concentrations of leptin, adiponectin, osteocalcin, undercarboxylated osteocalcin (UCOC), and phylloquinone. Body composition measurements were lean and percent fat mass, which were derived with the use of a 4-compartment model. Sequences of Regressions, a subclass of graphical Markov models, were used to describe the direct (nonmechanical) and indirect (mechanical) interrelations between metabolic factors and bone by simultaneously modeling multiple bone outcomes and their relation with biomarker outcomes with lean mass, percent fat mass, and height as intermediate explanatory variables.
Results: The graphical Markov models showed both direct and indirect associations linking plasma leptin and adiponectin concentrations with CSA and vBMD. At the distal tibia, lean mass, height, and adiponectin-UCOC interaction were directly explanatory of CSA (R2 = 0.45); at the diaphysis, lean mass, percent fat mass, leptin, osteocalcin, and age-adiponectin interaction were directly explanatory of CSA (R2 = 0.49). The regression models exploring direct associations for vBMD were much weaker, with R2 = 0.15 and 0.18 at the distal and diaphyseal sites, respectively. Lean mass and UCOC were associated, and the global Markov property of the graph indicated that this association was explained by osteocalcin.
Conclusions: This study, to our knowledge, offers a novel approach to the description of the complex physiological interrelations between adiponectin, leptin, and osteocalcin and the musculoskeletal system. There may be benefits to jointly targeting both systems to improve bone health.
doi:10.3945/jn.115.224485
PMCID: PMC4807646  PMID: 26962186
peripheral quantitative computed tomography; bone; adiponectin; leptin; osteocalcin; graphical Markov model; postmenopausal women; fat-free mass; fat mass; BMI
3.  Predictors of intact and C-terminal fibroblast growth factor 23 in Gambian children 
Endocrine Connections  2013;3(1):1-10.
Elevated C-terminal fibroblast growth factor 23 (C-FGF23) concentrations have been reported in Gambian children with and without putative Ca-deficiency rickets. The aims of this study were to investigate whether i) elevated C-FGF23 concentrations in Gambian children persist long term; ii) they are associated with higher intact FGF23 concentrations (I-FGF23), poor iron status and shorter 25-hydroxyvitamin D half-life (25OHD-t1/2); and iii) the persistence and predictors of elevated FGF23 concentrations differ between children with and without a history of rickets. Children (8–16 years, n=64) with a history of rickets and a C-FGF23 concentration >125 RU/ml (bone deformity (BD), n=20) and local community children with a previously measured elevated C-FGF23 concentration (LC+, n=20) or a previously measured C-FGF23 concentration within the normal range (LC−, n=24) participated. BD children had no remaining signs of bone deformities. C-FGF23 concentration had normalised in BD children, but remained elevated in LC+ children. All the children had I-FGF23 concentration within the normal range, but I-FGF23 concentration was higher and iron status poorer in LC+ children. 1,25-dihydroxyvitamin D was the strongest negative predictor of I-FGF23 concentration (R2=18%; P=0.0006) and soluble transferrin receptor was the strongest positive predictor of C-FGF23 concentration (R2=33%; P≤0.0001). C-FGF23 and I-FGF23 concentrations were poorly correlated with each other (R2=5.3%; P=0.07). 25OHD-t1/2 was shorter in BD children than in LC− children (mean (s.d.): 24.5 (6.1) and 31.5 (11.5) days respectively; P=0.05). This study demonstrated that elevated C-FGF23 concentrations normalised over time in Gambian children with a history of rickets but not in local children, suggesting a different aetiology; that children with resolved rickets had a shorter 25OHD-t1/2, suggesting a long-standing increased expenditure of 25OHD, and that iron deficiency is a predictor of elevated C-FGF23 concentrations in both groups of Gambian children.
doi:10.1530/EC-13-0070
PMCID: PMC3869962  PMID: 24258305
FGF23; vitamin D half-life; rickets; iron status; children
4.  Vitamin D supplementation in older people (VDOP): Study protocol for a randomised controlled intervention trial with monthly oral dosing with 12,000 IU, 24,000 IU or 48,000 IU of vitamin D3 
Trials  2013;14:299.
The randomised, double blind intervention trial ‘Optimising Vitamin D Status in Older People’ (VDOP) will test the effect of three oral dosages of vitamin D given for one year on bone mineral density (BMD) and biochemical markers of vitamin D metabolism, bone turnover and safety in older people. VDOP is funded by Arthritis Research UK, supported through Newcastle University and MRC Human Nutrition Research and sponsored by the Newcastle upon Tyne Hospitals NHS Foundation Trust.a
Background
Vitamin D insufficiency is common in older people and may lead to secondary hyperparathyroidism, bone loss, impairment of muscle function and increased risk of falls and fractures. Vitamin D supplementation trials have yielded conflicting results with regard to decreasing rates of bone loss, falls and fractures and the optimal plasma concentration of 25 hydroxy vitamin D (25OHD) for skeletal health remains unclear.
Method/design
Older (≥70 years) community dwelling men and women are recruited through General Practices in Northern England and 375 participants are randomised to take 12,000 international units (IU), 24,000 IU or 48,000 IU of vitamin D3 orally each month for one year starting in the winter or early spring. Hip BMD and anthropometry are measured at baseline and 12 months. Fasting blood samples are collected at baseline and three-month intervals for the measurement of plasma 25OHD, parathyroid hormone (PTH), biochemical markers of bone turnover and biochemistry to assess the dose–response and safety of supplementation. Questionnaire data include falls, fractures, quality of life, adverse events and outcomes, compliance, dietary calcium intake and sunshine exposure.
Discussion
This is the first integrated vitamin D supplementation trial in older men and women using a range of doses given at monthly intervals to assess BMD, plasma 25OHD, PTH and biochemical markers of bone turnover and safety, quality of life and physical performance. We aim to investigate the vitamin D supplementation and plasma 25OHD concentration required to maintain bone health and to develop a set of biochemical markers that reflects the effect of vitamin D on bone. This will aid future studies investigating the effect of vitamin D supplementation on fracture risk.
#ISRCTN 35648481 (assigned 16 August 2012), EudraCT 2011-004890-10.
doi:10.1186/1745-6215-14-299
PMCID: PMC3848647  PMID: 24041337
Vitamin D supplementation trial; Bone mineral density; 25 hydroxy vitamin D; Parathyroid hormone; Bone markers; Older people
5.  Increased Plasma Concentrations of Vitamin D Metabolites and Vitamin D Binding Protein in Women Using Hormonal Contraceptives: A Cross-Sectional Study 
Nutrients  2013;5(9):3470-3480.
Use of hormonal contraceptives (HC) may influence total plasma concentrations of vitamin D metabolites. A likely cause is an increased synthesis of vitamin D binding protein (VDBP). Discrepant results are reported on whether the use of HC affects free concentrations of vitamin D metabolites. Aim: In a cross-sectional study, plasma concentrations of vitamin D metabolites, VDBP, and the calculated free vitamin D index in users and non-users of HC were compared and markers of calcium and bone metabolism investigated. Results: 75 Caucasian women aged 25–35 years were included during winter season. Compared with non-users (n = 23), users of HC (n = 52) had significantly higher plasma concentrations of 25-hydroxyvitamin D (25OHD) (median 84 interquartile range: [67-111] vs. 70 [47-83] nmol/L, p = 0.01), 1,25-dihydroxyvitamin D (1,25(OH)2D) (198 [163-241] vs. 158 [123-183] pmol/L, p = 0.01) and VDBP (358 [260-432] vs. 271 [179-302] µg/mL, p < 0.001). However, the calculated free indices (FI-25OHD and FI-1,25(OH)2D) were not significantly different between groups (p > 0.10). There were no significant differences in indices of calcium homeostasis (plasma concentrations of calcium, parathyroid hormone, and calcitonin, p > 0.21) or bone metabolism (plasma bone specific alkaline phosphatase, osteocalcin, and urinary NTX/creatinine ratio) between groups. In conclusion: Use of HC is associated with 13%–25% higher concentrations of total vitamin D metabolites and VDBP. This however is not reflected in indices of calcium or bone metabolism. Use of HC should be considered in the interpretation of plasma concentrations vitamin D metabolites.
doi:10.3390/nu5093470
PMCID: PMC3798915  PMID: 24013463
hormonal contraceptives; 25hydroxyvitamin D; 1,25-dihydroxyvitamin D; vitamin D binding protein; parathyroid hormone; calcitonin; bone turnover; bone mineral density
6.  MAVIDOS Maternal Vitamin D Osteoporosis Study: study protocol for a randomized controlled trial. The MAVIDOS Study Group 
Trials  2012;13:13.
MAVIDOS is a randomised, double-blind, placebo-controlled trial (ISRCTN82927713, registered 2008 Apr 11), funded by Arthritis Research UK, MRC, Bupa Foundation and NIHR.
Background
Osteoporosis is a major public health problem as a result of associated fragility fractures. Skeletal strength increases from birth to a peak in early adulthood. This peak predicts osteoporosis risk in later life. Vitamin D insufficiency in pregnancy is common (31% in a recent Southampton cohort) and predicts reduced bone mass in the offspring. In this study we aim to test whether offspring of mothers supplemented with vitamin D in pregnancy have higher bone mass at birth than those whose mothers were not supplemented.
Methods/Design
Women have their vitamin D status assessed after ultrasound scanning in the twelfth week of pregnancy at 3 trial centres (Southampton, Sheffield, Oxford). Women with circulating 25(OH)-vitamin D levels 25-100 nmol/l are randomised in a double-blind design to either oral vitamin D supplement (1000 IU cholecalciferol/day, n = 477) or placebo at 14 weeks (n = 477). Questionnaire data include parity, sunlight exposure, dietary information, and cigarette and alcohol consumption. At 19 and 34 weeks maternal anthropometry is assessed and blood samples taken to measure 25(OH)-vitamin D, PTH and biochemistry. At delivery venous umbilical cord blood is collected, together with umbilical cord and placental tissue. The babies undergo DXA assessment of bone mass within the first 14 days after birth, with the primary outcome being whole body bone mineral content adjusted for gestational age and age. Children are then followed up with yearly assessment of health, diet, physical activity and anthropometric measures, with repeat assessment of bone mass by DXA at age 4 years.
Discussion
As far as we are aware, this randomised trial is one of the first ever tests of the early life origins hypothesis in human participants and has the potential to inform public health policy regarding vitamin D supplementation in pregnancy. It will also provide a valuable resource in which to study the influence of maternal vitamin D status on other childhood outcomes such as glucose tolerance, blood pressure, cardiovascular function, IQ and immunology.
doi:10.1186/1745-6215-13-13
PMCID: PMC3395865  PMID: 22314083
Vitamin D; cholecalciferol; supplementation; trial; osteoporosis; DXA; pregnancy; neonate
7.  Quantitative determination of vitamin D metabolites in plasma using UHPLC-MS/MS 
Vitamin D is an important determinant of bone health at all ages. The plasma concentrations of 25-hydroxy vitamin D (25-OH D) and other metabolites are used as biomarkers for vitamin sufficiency and function. To allow for the simultaneous determination of five vitamin D metabolites, 25-OH D3, 25-OH D2, 24,25-(OH)2 D3, 1,25-(OH)2 D3, and 1,25-(OH)2 D2, in low volumes of human plasma, an assay using ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) was established. Plasma samples were spiked with isotope-labeled internal standards and pretreated using protein precipitation, solid-phase extraction (SPE) and a Diels–Alder derivatization step with 4-phenyl-1,2,4-triazoline-3,5-dione. The SPE recovery rates ranged from 55% to 85%, depending on the vitamin D metabolite; the total sample run time was <5 min. Mass spectrometry was conducted using positive ion electrospray ionization in the multiple reaction monitoring mode on a quadrupole–quadrupole-linear ion trap instrument after pre-column addition of methylamine to increase the ionization efficiency. The intra- and inter-day relative standard deviations were 1.6–4.1% and 3.7–6.8%, respectively. The limit of quantitation for these compounds was determined to be between 10 and 20 pg/mL. The 25-OH D results were compared with values obtained for reference materials (DEQAS). In addition, plasma samples were analyzed with two additional Diasorin antibody assays. All comparisons with conventional methods showed excellent correlations (r2 = 0.9738) for DEQAS samples, demonstrating the high degree of comparability of the new UHPLC-MS/MS technique to existing methods.
doi:10.1007/s00216-010-3993-0
PMCID: PMC2939348  PMID: 20628873
Vitamin D; Metabolites; Plasma; UHPLC; Tandem mass spectrometry; Quantification; Multiple reaction monitoring (MRM)
8.  Abundant sunshine and vitamin D deficiency 
The British journal of nutrition  2008;99(6):1171-1173.
doi:10.1017/S0007114508898662
PMCID: PMC2758994  PMID: 18234141
9.  Ethnic differences in parathyroid hormone secretion and mineral metabolism in response to oral phosphate administration 
Bone  2009;45(2):238-245.
Ethnic differences in bone metabolism have been reported and it has been suggested that these may be partly due to prolonged exposure to an elevated plasma parathyroid hormone (PTH) concentration or a decreased sensitivity to PTH. We explored ethnic differences in bone and mineral metabolism by 5 days of oral phosphate (P) loading to stimulate PTH secretion. Healthy older people from UK (B), The Gambia (G) and China (C), 15 individuals from each sex and ethnic group, were studied. Blood and urine samples were collected before and 2 h after P dose on days 1, 4 and 5 and on a control day. The induced changes (%) in PTH and markers of mineral and bone metabolism after 2 h and over 5 days were examined.
At baseline, PTH, 1,25(OH)2D and bone turnover markers were higher in Gambian subjects than in British and Chinese subjects (P ≤ 0.01).
2 h after P loading, ionized calcium (iCa) decreased and PTH and plasma P (P) increased in all groups (P ≤ 0.01, n.s. between groups). Urinary P to creatinine ratio (uP/Cr) increased, the increase being greater in Chinese subjects than in British and Gambian subjects on days 4 and 5 (P ≤ 0.01). By day 5, fasting iCa was decreased and P increased in British and Gambian (P ≤ 0.01) but not in Chinese subjects. Fasting PTH and uP/Cr increased in all groups. There were ethnic differences in changes in bone markers, but the relationship with changes in PTH was comparable between groups.
In conclusion, ethnic differences in mineral metabolism in response to 5-day P loading were found. Chinese subjects showed a more rapid renal clearance of P than British and Gambian counterparts and there were differences between the groups in the skeletal response to P loading, but no evidence was found for resistance to the resorbing effects of PTH.
doi:10.1016/j.bone.2009.04.237
PMCID: PMC2764389  PMID: 19394454
Phosphate; Parathyroid hormone; Bone markers; Bone and mineral metabolism; Ethnic differences
10.  Vitamin D Deficiency and Its Health Consequences in Africa 
Africa is heterogeneous in latitude, geography, climate, food availability, religious and cultural practices, and skin pigmentation. It is expected, therefore, that prevalence of vitamin D deficiency varies widely, in line with influences on skin exposure to UVB sunshine. Furthermore, low calcium intakes and heavy burden of infectious disease common in many countries may increase vitamin D utilization and turnover. Studies of plasma 25OHD concentration indicate a spectrum from clinical deficiency to values at the high end of the physiological range; however, data are limited. Representative studies of status in different countries, using comparable analytical techniques, and of relationships between vitamin D status and risk of infectious and chronic diseases relevant to the African context are needed. Public health measures to secure vitamin D adequacy cannot encompass the whole continent and need to be developed locally.
doi:10.1007/s12018-009-9038-6
PMCID: PMC4126271  PMID: 25110467
Rickets; Osteomalacia; Vitamin D status; 25-hydroxyvitamin D; Vitamin D turnover; Calcium intake; Sunlight; Children
11.  Symposium on ‘Nutrition and health in children and adolescents’ Session 1: Nutrition in growth and development 
The growth and development of the human skeleton requires an adequate supply of many different nutritional factors. Classical nutrient deficiencies are associated with stunting (e.g. energy, protein, Zn), rickets (e.g. vitamin D) and other bone abnormalities (e.g. Cu, Zn, vitamin C). In recent years there has been interest in the role nutrition may play in bone growth at intakes above those required to prevent classical deficiencies, particularly in relation to optimising peak bone mass and minimising osteoporosis risk. There is evidence to suggest that peak bone mass and later fracture risk are influenced by the pattern of growth in childhood and by nutritional exposures in utero, in infancy and during childhood and adolescence. Of the individual nutrients, particular attention has been paid to Ca, vitamin D, protein and P. There has also been interest in several food groups, particularly dairy products, fruit and vegetables and foods contributing to acid–base balance. However, it is not possible at the present time to define dietary reference values using bone health as a criterion, and the question of what type of diet constitutes the best support for optimal bone growth and development remains open. Prudent recommendations (Department of Health, 1998; World Health Organization/Food and Agriculture Organization, 2003) are the same as those for adults, i.e. to consume a Ca intake close to the reference nutrient intake, optimise vitamin D status through adequate summer sunshine exposure (and diet supplementation where appropriate), be physically active, have a body weight in the healthy range, restrict salt intake and consume plenty of fruit and vegetables.
PMCID: PMC2039894  PMID: 17181901
Bone growth and development; Bone health; Nutritional factors; Dietary and lifestyle recommendations; Bone measurements in children
13.  Plasma appearance and disappearance of an oral dose of 25-hydroxyvitamin D2 in healthy adults 
The British Journal of Nutrition  2011;107(8):1128-1137.
25-Hydroxyvitamin D (25(OH)D) half-life is a potential biomarker for investigating vitamin D metabolism and requirements. We performed a pilot study to assess the approach and practical feasibility of measuring 25(OH)D half-life after an oral dose. A total of twelve healthy Gambian men aged 18–23 years were divided into two groups to investigate the rate and timing of (1) absorption and (2) plasma disappearance after an 80 nmol oral dose of 25(OH)D2. Fasting blood samples were collected at baseline and, in the first group, every 2 h post-dose for 12 h, at 24 h, 48 h and on day 15. In the second group, fasting blood samples were collected on days 3, 4, 5, 6, 9, 12, 15, 18 and 21. Urine was collected for 2 h after the first morning void at baseline and on day 15. 25(OH)D2 plasma concentration was measured by ultra-performance liquid chromatography-tandem MS/MS and corrected for baseline. Biomarkers of vitamin D, Ca and P metabolism were measured at baseline and on day 15. The peak plasma concentration of 25(OH)D2 was 9·6 (sd 0·9) nmol/l at 4·4 (sd 1·8) h. The terminal slope of 25(OH)D2 disappearance was identified to commence from day 6. The terminal half-life of plasma 25(OH)D2 was 13·4 (sd 2·7) d. There were no significant differences in plasma 25(OH)D3, total 1,25(OH)2D, parathyroid hormone, P, Ca and ionised Ca and urinary Ca and P between baseline and day 15 and between the two groups. The present study provides data on the plasma response to oral 25(OH)D2 that will underpin and contribute to the further development of studies to investigate 25(OH)D half-life.
doi:10.1017/S0007114511004132
PMCID: PMC3328847  PMID: 21896243
25-Hydroxyvitamin D; Absorption; Half-life; Gambia

Results 1-13 (13)