PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Subjects in a Population Study with High Levels of FENO Have Associated Eosinophil Airway Inflammation 
ISRN Allergy  2011;2011:792613.
Background. Measurement of fraction of exhaled nitric oxide (FENO) is a promising tool to increase validity in epidemiological studies of asthma. The association between airway inflammation and FENO has, however, only been examined in clinical settings and may be biased by selection of patients with asthma. Methods. In a population study with FENO registrations on 370 individuals, we identified nine subjects out of thirty subjects with high levels of FENO (>85th percentile, 30.3 ppb), irrespective of presence of respiratory symptoms, and 21 control subjects with FENO at median levels (11.1–16.4 ppb) willing to undergo bronchoscopy and bronchoalveolar lavage (BAL), all nonsmokers. FENO was measured in accordance with ATS criteria, and the examination also included spirometry, methacholine challenge test, and sampling of exhaled breath condensate (EBC). Results. Subjects with high FENO levels had significantly higher median the percentage of eosinophils in BAL than controls (2.1 versus 0.6, P < .006), and there was a significant association between FENO and the percentage of eosinophils in BAL (ρ=0.6, P < .002) and ECP in BAL (ρ=0.65, P < .05) examining the whole group, but no association with gender, FEV1, or degree of metacholine sensitivity or any of the biomarkers in EBC. All subjects with high FENO had respiratory symptoms, but only three had diagnosed asthma. There were a significant association between hydrogen peroxide in EBC and the percentage of neutrophils in bronchial wash. Conclusion. High FENO levels signal asthmatic or allergic respiratory disease in a population-based study. FENO levels are associated with degree of eosinophil airway inflammation as measured by the percentage of eosinophils and ECP in BAL.
doi:10.5402/2011/792613
PMCID: PMC4058119  PMID: 24977053
2.  Psychosocial work environment, job mobility and gender differences in turnover behaviour: a prospective study among the Swedish general population 
BMC Public Health  2014;14:605.
Background
Throughout the literature, substantial evidence supports associations between poor psychosocial work characteristics and a variety of ill-health outcomes. Yet, few reports strategies workers carry out to improve detrimental work conditions and consequently their health, such as changing jobs. The aim of this study was to examine if adverse psychosocial work exposure, as measured with the job demand-control and effort-reward imbalance models, could predict job mobility over a 5 years observation period.
Method
Participants were working men and women (n = 940; 54.3% women), aged 24–60 years from the population of Gothenburg and surrounding metropolitan area. Job demand-control and effort-reward variables were compared with independent t-tests and chi2-test in persons with and without job mobility. Multivariate logistic regression was used to analyse whether psychosocial factors could predict job mobility. All regression analyses were stratified by gender.
Results
Exposure to a combination of high demands-low control or high imbalance between effort and reward was related to increased odds of changing jobs (OR 1.63; CI 1.03-2.59 and OR 1.46; CI 1.13-1.89 respectively). When analysing men and women separately, men had a higher OR of changing jobs when exposed to either high demands-low control (OR 2.72; CI 1.24-5.98) or high effort-reward imbalance (OR 1.74; CI 1.11-2.72) compared to reference values. The only significant associations for women was slightly decreased odds for turnover in high reward jobs (OR 0.96; CI 0.92-0.99).
Conclusions
The results indicate that workers will seek to improve poor work environment by changing jobs. There were notable gender differences, where men tended to engage in job mobility when exposed to adverse psychosocial factors, while women did not. The lack of measures for mechanisms driving job mobility was a limitation of this study, thus preventing conclusions regarding psychosocial factors as the primary source for job mobility.
doi:10.1186/1471-2458-14-605
PMCID: PMC4073185  PMID: 24927628
Job demand-control; Effort-reward imbalance; Job mobility
3.  Validity of a questionnaire-based diagnosis of chronic obstructive pulmonary disease in a general population-based study 
Background
The diagnosis of chronic obstructive pulmonary disease (COPD) is based on airflow obstruction. In epidemiological studies, spirometric data have often been lacking and researchers have had to rely almost solely on questionnaire answers. The aim of this study is to assess the diagnostic accuracy of questionnaire answers to detect COPD.
Methods
A sample of the Swedish general population without physician-diagnosed asthma was randomly selected and interviewed using a respiratory questionnaire. All eligible subjects aged 25–75 years (n = 3892) performed spirometry for detection of airflow obstruction using Global Initiative for Chronic Obstructive Lung Disease (GOLD) or American Thoracic Society (ATS)/European Respiratory Society (ERS) criteria. Sensitivity, specificity, positive likelihood ratio (LR+), positive predictive values (PPVs), and negative predictive values (NPVs) were calculated to define diagnostic accuracy of questionnaire answers.
Results
The sensitivity of the question “Have you been diagnosed by a physician as having COPD or emphysema?” in detecting airflow obstruction was 5.7% using GOLD, and 9.8% using ATS/ERS, criteria; specificity was 99.7% for GOLD and 99.5% for ATS/ERS. Sensitivity, specificity, and PPV were higher for the question compared to self-reported symptoms of chronic bronchitis in identifying subjects with airflow obstruction.
Conclusions
The high specificity and good PPV suggest that the question “Have you been diagnosed by a physician as having COPD or emphysema?” is more likely to identify those who do not have airflow obstruction, whereas the low sensitivity of this question could underestimate the real burden of COPD in the general population.
doi:10.1186/1471-2466-14-49
PMCID: PMC3994476  PMID: 24650114
Airway obstruction; Spirometry; Sensitivity; Accuracy; ATS/ERS; GOLD
4.  Effects of wood smoke particles from wood-burning stoves on the respiratory health of atopic humans 
Background
There is growing evidence that particulate air pollution derived from wood stoves causes acute inflammation in the respiratory system, increases the incidence of asthma and other allergic diseases, and increases respiratory morbidity and mortality. The objective of this study was to evaluate acute respiratory effects from short-term wood smoke exposure in humans. Twenty non-smoking atopic volunteers with normal lung function and without bronchial responsiveness were monitored during three different experimental exposure sessions, aiming at particle concentrations of about 200 μg/m3, 400 μg/m3, and clean air as control exposure. A balanced cross-over design was used and participants were randomly allocated to exposure orders. Particles were generated in a wood-burning facility and added to a full-scale climate chamber where the participants were exposed for 3 hours under controlled environmental conditions. Health effects were evaluated in relation to: peak expiratory flow (PEF), forced expiratory volume in the first second (FEV1), and forced vital capacity (FVC). Furthermore, the effects were assessed in relation to changes in nasal patency and from markers of airway inflammation: fractional exhaled nitric oxide (FENO), exhaled breath condensate (EBC) and nasal lavage (NAL) samples were collected before, and at various intervals after exposure.
Results
No statistically significant effect of wood smoke exposure was found for lung function, for FENO, for NAL or for the nasal patency. Limited signs of airway inflammation were found in EBC.
Conclusion
In conclusion, short term exposure with wood smoke at a concentration normally found in a residential area with a high density of burning wood stoves causes only mild inflammatory response.
doi:10.1186/1743-8977-9-12
PMCID: PMC3419683  PMID: 22546175
Air pollution; Controlled exposure; Wood smoke; Particles; Airway inflammation; Lung function; Humans
5.  Exhaled nitric oxide and urinary EPX levels in infants: a pilot study 
Background
Objective markers of early airway inflammation in infants are not established but are of great interest in a scientific setting. Exhaled nitric oxide (FeNO) and urinary eosinophilic protein X (uEPX) are a two such interesting markers.
Objective
To investigate the feasibility of measuring FeNO and uEPX in infants and their mothers and to determine if any relations between these two variables and environmental factors can be seen in a small sample size. This was conducted as a pilot study for the ongoing Swedish Environmental Longitudinal Mother and child Asthma and allergy study (SELMA).
Methods
Consecutive infants between two and six months old and their mothers at children's health care centres were invited, and 110 mother-infant pairs participated. FeNO and uEPX were analysed in both mothers and infants. FeNO was analyzed in the mothers online by the use of the handheld Niox Mino device and in the infants offline from exhaled air sampled during tidal breathing. A 33-question multiple-choice questionnaire that dealt with symptoms of allergic disease, heredity, and housing characteristics was used.
Results
FeNO levels were reduced in infants with a history of upper respiratory symptoms during the previous two weeks (p < 0.002). There was a trend towards higher FeNO levels in infants with windowpane condensation in the home (p < 0.05). There was no association between uEPX in the infants and the other studied variables.
Conclusion
The use of uEPX as a marker of early inflammation was not supported. FeNO levels in infants were associated to windowpane condensation. Measuring FeNO by the present method may be an interesting way of evaluating early airway inflammation. In a major population study, however, the method is difficult to use, for practical reasons.
doi:10.1186/1476-7961-9-8
PMCID: PMC3117812  PMID: 21575173
Nitric Oxide; Eosinophil Granule Proteins; Infant; Housing; Allergy and Immunology
8.  Nasal nitric oxide in a random sample of adults and its relationship to sensitization, cat allergen, rhinitis, and ambient nitric oxide 
Background:
There is conflicting evidence whether nasal nitric oxide (NO) is associated with current rhinitis and with other possible predictors. Most studies have been performed in clinical cohorts and there is a lack of studies based on a general population sample. The aim of the present study was to investigate predictors for levels of nasal nitric oxide (NO) in a general population.
Methods:
The population consisted of 357 subjects from Gothenburg participating in the follow-up of the European Respiratory Health Survey in 1999–2001. All subjects completed an extensive respiratory questionnaire. Nasal NO was measured from one nostril at a time with a sampling rate of 50 mL/s for 16 seconds and the nasal NO concentration was determined as the mean value within the plateau phase. Mattress dust samples were collected for cats and mites in a subsample of subjects. Ambient and exhaled NO was also measured. The predictors for nasal NO were analyzed in multiple linear regression models.
Results:
There was no relation between the levels of nasal NO and reporting current rhinitis. Nasal NO was significantly increased among those with high levels of IgE against cats and current smokers had significantly lower nasal NO. There was also a positive association between ambient NO and nasal NO. There were no significant associations between nasal NO and sex, age, or height, or between nasal NO and measured levels of cat antigen.
Conclusion:
In this general population sample we found no relation between current rhinitis and nasal NO levels. There was a clear association between sensitization to cat and nasal NO, but there was no relation to current exposure to cat allergen. Our data support that nasal NO has a limited value in monitoring upper airway inflammation.
doi:10.2500/ajra.2012.26.3777
PMCID: PMC3906512  PMID: 22643936
Allergic rhinitis; epidemiology; FENO; nasal nitric oxide; nNO; rhinitis; sensitization
9.  Air Pollution, Airway Inflammation, and Lung Function in a Cohort Study of Mexico City Schoolchildren 
Environmental Health Perspectives  2008;116(6):832-838.
Background
The biological mechanisms involved in inflammatory response to air pollution are not clearly understood.
Objective
In this study we assessed the association of short-term air pollutant exposure with inflammatory markers and lung function.
Methods
We studied a cohort of 158 asthmatic and 50 nonasthmatic school-age children, followed an average of 22 weeks. We conducted spirometric tests, measurements of fractional exhaled nitric oxide (FeNO), interleukin-8 (IL-8) in nasal lavage, and pH of exhaled breath condensate every 15 days during follow-up. Data were analyzed using linear mixed-effects models.
Results
An increase of 17.5 μg/m3 in the 8-hr moving average of PM2.5 levels (interquartile range) was associated with a 1.08-ppb increase in FeNO [95% confidence interval (CI), 1.01–1.16] and a 1.07-pg/mL increase in IL-8 (95% CI 0.98–1.19) in asthmatic children and a 1.16 pg/ml increase in IL-8 (95% CI, 1.00–1.36) in nonasthmatic children. The 5-day accumulated average of exposure to particulate matter < 2.5 μm in aerodynamic diamter (PM2.5) was significantly inversely associated with forced expiratory volume in 1 sec (FEV1) (p = 0.048) and forced vital capacity (FVC) (p = 0.012) in asthmatic children and with FVC (p = 0.021) in nonasthmatic children. FeNO and FEV1 were inversely associated (p = 0.005) in asthmatic children.
Conclusions
Exposure to PM2.5 resulted in acute airway inflammation and decrease in lung function in both asthmatic and nonasthmatic children.
doi:10.1289/ehp.10926
PMCID: PMC2430242  PMID: 18560490
air pollution; airway inflammation; asthma; epidemiology; lung function; schoolchildren
10.  Interaction Effects of Long-Term Air Pollution Exposure and Variants in the GSTP1, GSTT1 and GSTCD Genes on Risk of Acute Myocardial Infarction and Hypertension: A Case-Control Study 
PLoS ONE  2014;9(6):e99043.
Introduction
Experimental and epidemiological studies have reported associations between air pollution exposure, in particular related to vehicle exhaust, and cardiovascular disease. A potential pathophysiological pathway is pollution-induced pulmonary oxidative stress, with secondary systemic inflammation. Genetic polymorphisms in genes implicated in oxidative stress, such as GSTP1, GSTT1 and GSTCD, may contribute to determining individual susceptibility to air pollution as a promoter of coronary vulnerability.
Aims
We aimed to investigate effects of long-term traffic-related air pollution exposure, as well as variants in GSTP1, GSTT1 and GSTCD, on risk of acute myocardial infarction (AMI) and hypertension. In addition, we studied whether air pollution effects were modified by the investigated genetic variants.
Methods
Genotype data at 7 single nucleotide polymorphisms (SNPs) in the GSTP1 gene, and one in each of the GSTT1 and GSTCD genes, as well as air pollution exposure estimates, were available for 119 AMI cases and 1310 randomly selected population controls. Population control individuals with systolic blood pressure ≥140 mmHg, diastolic blood pressure ≥90 mmHg or on daily antihypertensive medication were defined as hypertensive (n = 468). Individual air pollution exposure levels were modeled as annual means of NO2 (marker of vehicle exhaust pollutants) using central monitoring data and dispersion models, linking to participants' home addresses.
Results
Air pollution was significantly associated with risk of AMI: OR 1.78 (95%CI 1.04–3.03) per 10 µg/m3 of long-term NO2 exposure. Three GSTP1 SNPs were significantly associated with hypertension. The effect of air pollution on risk of AMI varied by genotype strata, although the suggested interaction was not significant. We saw no obvious interaction between genetic variants in the GST genes and air pollution exposure for hypertension.
Conclusion
Air pollution exposure entails an increased risk of AMI, and this risk differed over genotype strata for variants in the GSTP1, GSTT1 and GSTCD genes, albeit not statistically-significantly.
doi:10.1371/journal.pone.0099043
PMCID: PMC4051658  PMID: 24915237
11.  Bronchial Responsiveness Is Related to Increased Exhaled NO (FENO) in Non-Smokers and Decreased FENO in Smokers 
PLoS ONE  2012;7(4):e35725.
Rationale
Both atopy and smoking are known to be associated with increased bronchial responsiveness. Fraction of nitric oxide (NO) in the exhaled air (FENO), a marker of airways inflammation, is decreased by smoking and increased by atopy. NO has also a physiological bronchodilating and bronchoprotective role.
Objectives
To investigate how the relation between FENO and bronchial responsiveness is modulated by atopy and smoking habits.
Methods
Exhaled NO measurements and methacholine challenge were performed in 468 subjects from the random sample of three European Community Respiratory Health Survey II centers: Turin (Italy), Gothenburg and Uppsala (both Sweden). Atopy status was defined by using specific IgE measurements while smoking status was questionnaire-assessed.
Main Results
Increased bronchial responsiveness was associated with increased FENO levels in non-smokers (p = 0.02) and decreased FENO levels in current smokers (p = 0.03). The negative association between bronchial responsiveness and FENO was seen only in the group smoking less <10 cigarettes/day (p = 0.008). Increased bronchial responsiveness was associated with increased FENO in atopic subjects (p = 0.04) while no significant association was found in non-atopic participants. The reported interaction between FENO and smoking and atopy, respectively were maintained after adjusting for possible confounders (p-values<0.05).
Conclusions
The present study highlights the interactions of the relationship between FENO and bronchial responsiveness with smoking and atopy, suggesting different mechanisms behind atopy- and smoking-related increases of bronchial responsiveness.
doi:10.1371/journal.pone.0035725
PMCID: PMC3338521  PMID: 22563393
12.  Effect of Five Genetic Variants Associated with Lung Function on the Risk of Chronic Obstructive Lung Disease, and Their Joint Effects on Lung Function 
Rationale: Genomic loci are associated with FEV1 or the ratio of FEV1 to FVC in population samples, but their association with chronic obstructive pulmonary disease (COPD) has not yet been proven, nor have their combined effects on lung function and COPD been studied.
Objectives: To test association with COPD of variants at five loci (TNS1, GSTCD, HTR4, AGER, and THSD4) and to evaluate joint effects on lung function and COPD of these single-nucleotide polymorphisms (SNPs), and variants at the previously reported locus near HHIP.
Methods: By sampling from 12 population-based studies (n = 31,422), we obtained genotype data on 3,284 COPD case subjects and 17,538 control subjects for sentinel SNPs in TNS1, GSTCD, HTR4, AGER, and THSD4. In 24,648 individuals (including 2,890 COPD case subjects and 13,862 control subjects), we additionally obtained genotypes for rs12504628 near HHIP. Each allele associated with lung function decline at these six SNPs contributed to a risk score. We studied the association of the risk score to lung function and COPD.
Measurements and Main Results: Association with COPD was significant for three loci (TNS1, GSTCD, and HTR4) and the previously reported HHIP locus, and suggestive and directionally consistent for AGER and TSHD4. Compared with the baseline group (7 risk alleles), carrying 10–12 risk alleles was associated with a reduction in FEV1 (β = –72.21 ml, P = 3.90 × 10−4) and FEV1/FVC (β = –1.53%, P = 6.35 × 10−6), and with COPD (odds ratio = 1.63, P = 1.46 × 10−5).
Conclusions: Variants in TNS1, GSTCD, and HTR4 are associated with COPD. Our highest risk score category was associated with a 1.6-fold higher COPD risk than the population average score.
doi:10.1164/rccm.201102-0192OC
PMCID: PMC3398416  PMID: 21965014
FEV1; FVC; genome-wide association study; modeling risk

Results 1-12 (12)