PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (40)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  Deletions and de novo mutations of SOX11 are associated with a neurodevelopmental disorder with features of Coffin–Siris syndrome 
Journal of Medical Genetics  2015;53(3):152-162.
Background
SOX11 is a transcription factor proposed to play a role in brain development. The relevance of SOX11 to human developmental disorders was suggested by a recent report of SOX11 mutations in two patients with Coffin–Siris syndrome. Here we further investigate the role of SOX11 variants in neurodevelopmental disorders.
Methods
We used array based comparative genomic hybridisation and trio exome sequencing to identify children with intellectual disability who have deletions or de novo point mutations disrupting SOX11. The pathogenicity of the SOX11 mutations was assessed using an in vitro gene expression reporter system. Loss-of-function experiments were performed in xenopus by knockdown of Sox11 expression.
Results
We identified seven individuals with chromosome 2p25 deletions involving SOX11. Trio exome sequencing identified three de novo SOX11 variants, two missense (p.K50N; p.P120H) and one nonsense (p.C29*). The biological consequences of the missense mutations were assessed using an in vitro gene expression system. These individuals had microcephaly, developmental delay and shared dysmorphic features compatible with mild Coffin–Siris syndrome. To further investigate the function of SOX11, we knocked down the orthologous gene in xenopus. Morphants had significant reduction in head size compared with controls. This suggests that SOX11 loss of function can be associated with microcephaly.
Conclusions
We thus propose that SOX11 deletion or mutation can present with a Coffin–Siris phenotype.
doi:10.1136/jmedgenet-2015-103393
PMCID: PMC4789813  PMID: 26543203
Developmental; Clinical genetics; Copy-number; Diagnostics tests
2.  Axial Spondylometaphyseal Dysplasia Is Caused by C21orf2 Mutations 
PLoS ONE  2016;11(3):e0150555.
Axial spondylometaphyseal dysplasia (axial SMD) is an autosomal recessive disease characterized by dysplasia of axial skeleton and retinal dystrophy. We conducted whole exome sequencing and identified C21orf2 (chromosome 21 open reading frame 2) as a disease gene for axial SMD. C21orf2 mutations have been recently found to cause isolated retinal degeneration and Jeune syndrome. We found a total of five biallelic C21orf2 mutations in six families out of nine: three missense and two splicing mutations in patients with various ethnic backgrounds. The pathogenic effects of the splicing (splice-site and branch-point) mutations were confirmed on RNA level, which showed complex patterns of abnormal splicing. C21orf2 mutations presented with a wide range of skeletal phenotypes, including cupped and flared anterior ends of ribs, lacy ilia and metaphyseal dysplasia of proximal femora. Analysis of patients without C21orf2 mutation indicated genetic heterogeneity of axial SMD. Functional data in chondrocyte suggest C21orf2 is implicated in cartilage differentiation. C21orf2 protein was localized to the connecting cilium of the cone and rod photoreceptors, confirming its significance in retinal function. Our study indicates that axial SMD is a member of a unique group of ciliopathy affecting skeleton and retina.
doi:10.1371/journal.pone.0150555
PMCID: PMC4790905  PMID: 26974433
3.  Functional Investigation of a Non-coding Variant Associated with Adolescent Idiopathic Scoliosis in Zebrafish: Elevated Expression of the Ladybird Homeobox Gene Causes Body Axis Deformation 
PLoS Genetics  2016;12(1):e1005802.
Previously, we identified an adolescent idiopathic scoliosis susceptibility locus near human ladybird homeobox 1 (LBX1) and FLJ41350 by a genome-wide association study. Here, we characterized the associated non-coding variant and investigated the function of these genes. A chromosome conformation capture assay revealed that the genome region with the most significantly associated single nucleotide polymorphism (rs11190870) physically interacted with the promoter region of LBX1-FLJ41350. The promoter in the direction of LBX1, combined with a 590-bp region including rs11190870, had higher transcriptional activity with the risk allele than that with the non-risk allele in HEK 293T cells. The ubiquitous overexpression of human LBX1 or either of the zebrafish lbx genes (lbx1a, lbx1b, and lbx2), but not FLJ41350, in zebrafish embryos caused body curvature followed by death prior to vertebral column formation. Such body axis deformation was not observed in transcription activator-like effector nucleases mediated knockout zebrafish of lbx1b or lbx2. Mosaic expression of lbx1b driven by the GATA2 minimal promoter and the lbx1b enhancer in zebrafish significantly alleviated the embryonic lethal phenotype to allow observation of the later onset of the spinal curvature with or without vertebral malformation. Deformation of the embryonic body axis by lbx1b overexpression was associated with defects in convergent extension, which is a component of the main axis-elongation machinery in gastrulating embryos. In embryos overexpressing lbx1b, wnt5b, a ligand of the non-canonical Wnt/planar cell polarity (PCP) pathway, was significantly downregulated. Injection of mRNA for wnt5b or RhoA, a key downstream effector of Wnt/PCP signaling, rescued the defective convergent extension phenotype and attenuated the lbx1b-induced curvature of the body axis. Thus, our study presents a novel pathological feature of LBX1 and its zebrafish homologs in body axis deformation at various stages of embryonic and subsequent growth in zebrafish.
Author Summary
Scoliosis is the most common type of spinal deformity with a lateral spinal curvature of at least 10 degrees, affecting 2–4% of the population. Scoliosis caused by a primary problem related to the spine itself is classified into congenital scoliosis (CS) and idiopathic scoliosis (IS). Among these, adolescent idiopathic scoliosis (AIS), the most common form of scoliosis, is known as a common polygenic disease. Severe curving of the spine in scoliosis leads to profound psychological and social impacts, but etiology-based therapies have not been established since the precise pathological mechanisms of both IS and CS remain undefined. Previously, we identified an AIS susceptibility locus near human ladybird homeobox 1 (LBX1) by a genome-wide association study. Here, we report the functional characterization of the most significantly associated single nucleotide polymorphism (SNP), rs11190870 and LBX1 as well as its zebrafish homologues. Overexpression of LBX1 and zebrafish lbx genes caused lateral body curvature in association with the impairment of non-canonical Wnt/planar cell polarity signaling. Thus, our study presents a novel pathological feature of LBX1 in body axis deformation.
doi:10.1371/journal.pgen.1005802
PMCID: PMC4731154  PMID: 26820155
4.  Identification of HOXD4 Mutations in Spinal Extradural Arachnoid Cyst 
PLoS ONE  2015;10(11):e0142126.
Spinal extradural arachnoid cyst (SEDAC) is a cyst in the spinal canal that protrudes into the epidural space from a defect in the dura mater and leads to neurological disturbances. We previously showed that familial SEDAC is caused by FOXC2 mutation; however, the causal gene of sporadic SEDAC has not been identified. To identify the causal gene of sporadic SEDAC, we performed whole exome sequencing for 12 subjects with sporadic SEDAC and identified heterozygous HOXD4 loss-of-function mutations in three subjects. HOXD4 haplo-insufficiency causes SEDAC and a transcriptional network containing HOXD4 and FOXC2 is involved in the development of the dura mater and the etiology of SEDAC.
doi:10.1371/journal.pone.0142126
PMCID: PMC4636324  PMID: 26545093
5.  A novel FOXC2 mutation in spinal extradural arachnoid cyst 
Human Genome Variation  2015;2:15032-.
Spinal extradural arachnoid cyst (SEDAC) is a cyst in the spinal canal, which causes spinal cord compression and subsequent neurological damage. We previously identified two FOXC2 mutations in two SEDAC families. The FOXC2 mutations have been shown to be responsible for lymphedema-distichiasis syndrome (LDS), which includes SEDAC as an occasionally associated phenotype. We encountered a non-familial patient with SEDAC associated with LDS, and identified a novel nonsense mutation in FOXC2, c.349C>T (p.Q117*).
doi:10.1038/hgv.2015.32
PMCID: PMC4785541  PMID: 27081541
6.  Large-Scale Analysis of Association Between GDF5 and FRZB Variants and Osteoarthritis of the Hip, Knee, and Hand 
Arthritis and rheumatism  2009;60(6):1710-1721.
Objective
GDF5 and FRZB have been proposed as genetic loci conferring susceptibility to osteoarthritis (OA); however, the results of several studies investigating the association of OA with the rs143383 polymorphism of the GDF5 gene or the rs7775 and rs288326 polymorphisms of the FRZB gene have been conflicting or inconclusive. To examine these associations, we performed a large-scale meta-analysis of individual-level data.
Methods
Fourteen teams contributed data on polymorphisms and knee, hip, and hand OA. For rs143383, the total number of cases and controls, respectively, was 5,789 and 7,850 for hip OA, 5,085 and 8,135 for knee OA, and 4,040 and 4,792 for hand OA. For rs7775, the respective sample sizes were 4,352 and 10,843 for hip OA, 3,545 and 6,085 for knee OA, and 4,010 and 5,151 for hand OA, and for rs288326, they were 4,346 and 8,034 for hip OA, 3,595 and 6,106 for knee OA, and 3,982 and 5,152 for hand OA. For each individual study, sex-specific odds ratios (ORs) were calculated for each OA phenotype that had been investigated. The ORs for each phenotype were synthesized using both fixed-effects and random-effects models for allele-based effects, and also for haplotype effects for FRZB.
Results
A significant random-effects summary OR for knee OA was demonstrated for rs143383 (1.15 [95% confidence interval 1.09–1.22]) (P = 9.4 × 10−7), with no significant between-study heterogeneity. Estimates of effect sizes for hip and hand OA were similar, but a large between-study heterogeneity was observed, and statistical significance was borderline (for OA of the hip [P = 0.016]) or absent (for OA of the hand [P = 0.19]). Analyses for FRZB polymorphisms and haplotypes did not reveal any statistically significant signals, except for a borderline association of rs288326 with hip OA (P = 0.019).
Conclusion
Evidence of an association between the GDF5 rs143383 polymorphism and OA is substantially strong, but the genetic effects are consistent across different populations only for knee OA. Findings of this collaborative analysis do not support the notion that FRZB rs7775 or rs288326 has any sizable genetic effect on OA phenotypes.
doi:10.1002/art.24524
PMCID: PMC4412885  PMID: 19479880
7.  A PAX1 enhancer locus is associated with susceptibility to idiopathic scoliosis in females 
Nature communications  2015;6:6452.
Idiopathic scoliosis (IS) is a common pediatric musculoskeletal disease that displays a strong female bias. By performing a genome-wide association study (GWAS) of 3,102 individuals we identify significant associations with 20p11.22 SNPs for females (P=6.89×10−9) but not males (P=0.71). This association with IS is also found in independent female cohorts from the USA and Japan (overall P=2.15×10−10, OR=1.30 (rs6137473)). Unexpectedly, the 20p11.22 IS risk alleles were previously associated with protection from early-onset alopecia, another sexually dimorphic condition. The 174 kb associated locus is distal to PAX1 which encodes paired box 1, a transcription factor involved in spine development. We identify a sequence in the associated locus with enhancer activity in zebrafish somitic muscle and spinal cord, an activity that is abolished by IS-associated SNPs. We thus identify a sexually dimorphic IS susceptibility locus, and propose the first functionally-defined candidate mutations in an enhancer that may regulate expression in specific spinal cells.
doi:10.1038/ncomms7452
PMCID: PMC4365504  PMID: 25784220
8.  A PAX1 enhancer locus is associated with susceptibility to idiopathic scoliosis in females 
Nature Communications  2015;6:6452.
Idiopathic scoliosis (IS) is a common paediatric musculoskeletal disease that displays a strong female bias. By performing a genome-wide association study (GWAS) of 3,102 individuals, we identify significant associations with 20p11.22 SNPs for females (P=6.89 × 10−9) but not males (P=0.71). This association with IS is also found in independent female cohorts from the United States of America and Japan (overall P=2.15 × 10−10, OR=1.30 (rs6137473)). Unexpectedly, the 20p11.22 IS risk alleles were previously associated with protection from early-onset alopecia, another sexually dimorphic condition. The 174-kb associated locus is distal to PAX1, which encodes paired box 1, a transcription factor involved in spine development. We identify a sequence in the associated locus with enhancer activity in zebrafish somitic muscle and spinal cord, an activity that is abolished by IS-associated SNPs. We thus identify a sexually dimorphic IS susceptibility locus, and propose the first functionally defined candidate mutations in an enhancer that may regulate expression in specific spinal cells.
Girls are tenfold more likely than boys to require surgical treatment for idiopathic scoliosis, a common paediatric skeletal disorder. Here, Sharma et al. identify the first sexually dimorphic idiopathic scoliosis risk locus, and demonstrate that it may play a role in the regulation of spinal cells.
doi:10.1038/ncomms7452
PMCID: PMC4365504  PMID: 25784220
9.  Influence of Intra-Articular Administration of Trichostatin A on Autologous Osteochondral Transplantation in a Rabbit Model 
BioMed Research International  2015;2015:470934.
Autologous osteochondral transplantation (AOT) is a method for articular cartilage repair. However, several disadvantages of this method have been reported, such as transplanted cartilage degeneration and the lack of a connection between the grafted and adjacent cartilage tissues. To evaluate the effect of intra-articular administration of trichostatin A (TSA) on AOT, we conducted a case control study in a rabbit model. International Cartilage Repair Society (ICRS) macroscopic scores, the modified O'Driscoll histology scores, and real-time PCR were utilized to evaluate the results. At 4 weeks, both macroscopic and histological assessments showed that there was no significant difference between the TSA and control groups. However, the mean macroscopic and histological scores for the TSA-treated group were significantly higher than the scores for the control group at 12 weeks. TSA was shown to directly reduce collagen type II (COL2), aggrecan, matrix metalloproteinase (MMP), and a disintegrin and metalloproteinase domain with thrombospondin motifs 5 (ADAMTS-5) expression and to simultaneously repress the upregulation of MMP-3, MMP-9, and MMP-13 levels induced by interleukin 1β (IL-1β) in chondrocytes. In conclusion, TSA protects AOT grafts from degeneration, which may provide a benefit in the repair of articular cartilage injury.
doi:10.1155/2015/470934
PMCID: PMC4381848  PMID: 25866784
11.  Genomic study of ossification of the posterior longitudinal ligament of the spine 
Ossification of the posterior longitudinal ligament of the spine (OPLL) is a common disease after the middle age. OPLL frequently causes serious neurological problems due to compression of the spinal cord and/or nerve roots. OPLL occurs in patients with monogenic metabolic diseases including rickets/osteomalacia and hypoparathyroidism; however most of OPLL is idiopathic and is considered as a multi-factorial (polygenic) disease influenced by genetic and environmental factors. Genomic studies for the genetic factors of OPLL have been conducted, mainly in Japan, including linkage and association studies. This paper reviews the recent progress in the genomic study of OPLL and comments on its future direction.
doi:10.2183/pjab.90.405
PMCID: PMC4335137  PMID: 25504229
OPLL; susceptibility gene; genetics; linkage study; association study; genome-wide association study
12.  Japanese founder duplications/triplications involving BHLHA9 are associated with split-hand/foot malformation with or without long bone deficiency and Gollop-Wolfgang complex 
Background
Limb malformations are rare disorders with high genetic heterogeneity. Although multiple genes/loci have been identified in limb malformations, underlying genetic factors still remain to be determined in most patients.
Methods
This study consisted of 51 Japanese families with split-hand/foot malformation (SHFM), SHFM with long bone deficiency (SHFLD) usually affecting the tibia, or Gollop-Wolfgang complex (GWC) characterized by SHFM and femoral bifurcation. Genetic studies included genomewide array comparative genomic hybridization and exome sequencing, together with standard molecular analyses.
Results
We identified duplications/triplications of a 210,050 bp segment containing BHLHA9 in 29 SHFM patients, 11 SHFLD patients, two GWC patients, and 22 clinically normal relatives from 27 of the 51 families examined, as well as in 2 of 1,000 Japanese controls. Families with SHFLD- and/or GWC-positive patients were more frequent in triplications than in duplications. The fusion point was identical in all the duplications/triplications and was associated with a 4 bp microhomology. There was no sequence homology around the two breakpoints, whereas rearrangement-associated motifs were abundant around one breakpoint. The rs3951819-D17S1174 haplotype patterns were variable on the duplicated/triplicated segments. No discernible genetic alteration specific to patients was detected within or around BHLHA9, in the known causative SHFM genes, or in the exome.
Conclusions
These results indicate that BHLHA9 overdosage constitutes the most frequent susceptibility factor, with a dosage effect, for a range of limb malformations at least in Japan. Notably, this is the first study revealing the underlying genetic factor for the development of GWC, and demonstrating the presence of triplications involving BHLHA9. It is inferred that a Japanese founder duplication was generated through a replication-based mechanism and underwent subsequent triplication and haplotype modification through recombination-based mechanisms, and that the duplications/triplications with various haplotypes were widely spread in Japan primarily via clinically normal carriers and identified via manifesting patients. Furthermore, genotype-phenotype analyses of patients reported in this study and the previous studies imply that clinical variability is ascribed to multiple factors including the size of duplications/triplications as a critical factor.
Electronic supplementary material
The online version of this article (doi:10.1186/s13023-014-0125-5) contains supplementary material, which is available to authorized users.
doi:10.1186/s13023-014-0125-5
PMCID: PMC4205278  PMID: 25351291
BHLHA9; Split-hand/foot malformation; Long bone deficiency; Gollop-Wolfgang complex; Expressivity; Penetrance; Susceptibility; Japanese founder copy number gain
13.  Meta-analysis identifies a MECOM gene as a novel predisposing factor of osteoporotic fracture 
Journal of medical genetics  2013;50(4):212-219.
Background
Osteoporotic fracture (OF) as a clinical endpoint is a major complication of osteoporosis. To screen for OF susceptibility genes, we performed a genome-wide association study and carried out de novo replication analysis of an East Asian population.
Methods
Association was tested using a logistic regression analysis. A meta-analysis was performed on the combined results using effect size and standard errors estimated for each study.
Results
In a combined meta-analysis of a discovery cohort (288 cases and 1139 controls), three hospital based sets in replication stage I (462 cases and 1745 controls), and an independent ethnic group in replication stage II (369 cases and 560 for controls), we identified a new locus associated with OF (rs784288 in the MECOM gene) that showed genome-wide significance (p=3.59×10−8; OR 1.39). RNA interference revealed that a MECOM knockdown suppresses osteoclastogenesis.
Conclusions
Our findings provide new insights into the genetic architecture underlying OF in East Asians.
doi:10.1136/jmedgenet-2012-101156
PMCID: PMC4169276  PMID: 23349225
14.  rs10865331 Associated with Susceptibility and Disease Severity of Ankylosing Spondylitis in a Taiwanese Population 
PLoS ONE  2014;9(9):e104525.
Ankylosing spondylitis (AS) is a highly familial rheumatic disorder and is considered as a chronic inflammatory disease. Genetic factors are involved in the pathogenesis of AS. To identify genes which render people susceptible to AS in a Taiwanese population, we selected six single-nucleotide polymorphisms (SNPs) from previous genome-wide association studies (GWASs) which were associated with AS in European descendants and Han Chinese. To assess whether the six SNPs contributed to AS susceptibility and severity in Taiwanese population, 475 AS patients fulfilling the modified New York Criteria and 527 healthy subjects were recruited. We found that rs10865331 was significantly associated with AS susceptibility and with Bath AS Function Index (BASFI). The AA and AG genotypes of rs10865331 were also significantly associated with a higher erythrocyte sedimentation rate. Our findings provided evidence that rs10865331 is associated AS susceptibility and with disease activity (BASFI) in a Taiwanese population.
doi:10.1371/journal.pone.0104525
PMCID: PMC4153545  PMID: 25184745
15.  Molecular pathogenesis of Spondylocheirodysplastic Ehlers-Danlos syndrome caused by mutant ZIP13 proteins 
EMBO Molecular Medicine  2014;6(8):1028-1042.
The zinc transporter protein ZIP13 plays critical roles in bone, tooth, and connective tissue development, and its dysfunction is responsible for the spondylocheirodysplastic form of Ehlers-Danlos syndrome (SCD-EDS, OMIM 612350). Here, we report the molecular pathogenic mechanism of SCD-EDS caused by two different mutant ZIP13 proteins found in human patients: ZIP13G64D, in which Gly at amino acid position 64 is replaced by Asp, and ZIP13ΔFLA, which contains a deletion of Phe-Leu-Ala. We demonstrated that both the ZIP13G64D and ZIP13ΔFLA protein levels are decreased by degradation via the valosin-containing protein (VCP)-linked ubiquitin proteasome pathway. The inhibition of degradation pathways rescued the protein expression levels, resulting in improved intracellular Zn homeostasis. Our findings uncover the pathogenic mechanisms elicited by mutant ZIP13 proteins. Further elucidation of these degradation processes may lead to novel therapeutic targets for SCD-EDS.
doi:10.15252/emmm.201303809
PMCID: PMC4154131  PMID: 25007800
Proteasome; SCD-EDS; VCP; zinc transporter; ZIP13
16.  Genetics of Ossification of the Posterior Longitudinal Ligament of the Spine: A Mini Review 
Journal of Bone Metabolism  2014;21(2):127-132.
Ossification of the posterior longitudinal ligament of the spine (OPLL) is a common disease in aging populations and sometimes results in serious neurological problems due to compression of the spinal cord and nerve roots. OPLL is a multi-factorial (polygenic) disease controlled by genetic and environmental factors. Studies searching for the genetic component of OPLL, using linkage and association analyses, are in progress and several susceptibility genes have been reported. This paper reviews the recent progress in the genetic study of OPLL and comments on its future task.
doi:10.11005/jbm.2014.21.2.127
PMCID: PMC4075266  PMID: 25006569
Genetic association studies; Ossification of posterior longitudinal ligament; Polymorphism
17.  Mucopolysaccharidosis IVA (Morquio A syndrome) and VI (Maroteaux–Lamy syndrome): under-recognized and challenging to diagnose 
Skeletal Radiology  2014;43(3):359-369.
Objective
Mucopolysaccharidosis IVA (MPS IVA, or Morquio A syndrome) and VI (MPS VI, or Maroteaux–Lamy syndrome) are autosomal recessive lysosomal storage disorders. Skeletal abnormalities are common initial presenting symptoms and, when recognized early, may facilitate timely diagnosis and intervention, leading to improved patient outcomes. Patients with slowly progressing disease and nonclassic phenotypes can be particularly challenging to diagnose. The objective was to describe the radiographic features of patients with a delayed diagnosis of MPS IVA or VI.
Materials and Methods
This was a retrospective study. The records of 5 MPS IVA and 3 MPS VI patients with delayed diagnosis were reviewed. Radiographs were evaluated by a radiologist with special expertise in skeletal dysplasias.
Results
An important common theme in these cases was the appearance of multiple epiphyseal dysplasia (MED) with epiphyseal changes seemingly confined to the capital (proximal) femoral epiphyses. Very few patients had the skeletal features of classical dysostosis multiplex.
Conclusions
Radiologists should appreciate the wide phenotypic variability of MPS IVA and VI. The cases presented here illustrate the importance of considering MPS in the differential diagnosis of certain skeletal dysplasias/disorders, including MED, some forms of spondylo-epiphyseal dysplasia (SED), and bilateral Perthes-like disease. It is important to combine radiographic findings with clinical information to facilitate early testing and accurate diagnosis.
doi:10.1007/s00256-013-1797-y
PMCID: PMC3901942  PMID: 24389823
Mucopolysaccharidosis; MPS; Morquio; Morquio A; Maroteaux-Lamy; MPS IVA; MPS VI; Dysostosis multiplex; Multiple epiphyseal dysplasia; MED; Spondylo-epiphyseal dysplasia; SED
18.  FOXC2 Mutations in Familial and Sporadic Spinal Extradural Arachnoid Cyst 
PLoS ONE  2013;8(11):e80548.
Spinal extradural arachnoid cyst (SEDAC) is a cyst in the spinal canal that protrudes into the epidural space from a defect in the dura mater. Most cases are sporadic; however, three familial SEDAC cases have been reported, suggesting genetic etiological factors. All familial cases are associated with lymphedema-distichiasis syndrome (LDS), whose causal gene is FOXC2. However, FOXC2 mutation analysis has been performed in only 1 family, and no mutation analysis has been performed on sporadic (non-familial) SEDACs. We recruited 17 SEDAC subjects consisting of 2 familial and 7 sporadic cases and examined FOXC2 mutations by Sanger sequencing and structural abnormalities by TaqMan copy number assay. We identified 2 novel FOXC2 mutations in 2 familial cases. Incomplete LDS penetrance was noted in both families. Four subjects presented with SEDACs only. Thus, SEDAC caused by the heterozygous FOXC2 loss-of-function mutation should be considered a feature of LDS, although it often manifests as the sole symptom. Seven sporadic SEDAC subjects had no FOXC2 mutations, no symptoms of LDS, and showed differing clinical characteristics from those who had FOXC2 mutations, suggesting that other gene(s) besides FOXC2 are likely to be involved in SEDAC.
doi:10.1371/journal.pone.0080548
PMCID: PMC3838418  PMID: 24278289
19.  Lumbar disc degeneration is linked to a carbohydrate sulfotransferase 3 variant 
The Journal of Clinical Investigation  2013;123(11):4909-4917.
Lumbar disc degeneration (LDD) is associated with both genetic and environmental factors and affects many people worldwide. A hallmark of LDD is loss of proteoglycan and water content in the nucleus pulposus of intervertebral discs. While some genetic determinants have been reported, the etiology of LDD is largely unknown. Here we report the findings from linkage and association studies on a total of 32,642 subjects consisting of 4,043 LDD cases and 28,599 control subjects. We identified carbohydrate sulfotransferase 3 (CHST3), an enzyme that catalyzes proteoglycan sulfation, as a susceptibility gene for LDD. The strongest genome-wide linkage peak encompassed CHST3 from a Southern Chinese family–based data set, while a genome-wide association was observed at rs4148941 in the gene in a meta-analysis using multiethnic population cohorts. rs4148941 lies within a potential microRNA-513a-5p (miR-513a-5p) binding site. Interaction between miR-513a-5p and mRNA transcribed from the susceptibility allele (A allele) of rs4148941 was enhanced in vitro compared with transcripts from other alleles. Additionally, expression of CHST3 mRNA was significantly reduced in the intervertebral disc cells of human subjects carrying the A allele of rs4148941. Together, our data provide new insights into the etiology of LDD, implicating an interplay between genetic risk factors and miRNA.
doi:10.1172/JCI69277
PMCID: PMC3809787  PMID: 24216480
20.  Identification of a Susceptibility Locus for Severe Adolescent Idiopathic Scoliosis on Chromosome 17q24.3 
PLoS ONE  2013;8(9):e72802.
Adolescent idiopathic scoliosis (AIS) is the most common spinal deformity, affecting around 2% of adolescents worldwide. Genetic factors play an important role in its etiology. Using a genome-wide association study (GWAS), we recently identified novel AIS susceptibility loci on chromosomes 10q24.31 and 6q24.1. To identify more AIS susceptibility loci relating to its severity and progression, we performed GWAS by limiting the case subjects to those with severe AIS. Through a two-stage association study using a total of ∼12,000 Japanese subjects, we identified a common variant, rs12946942 that showed a significant association with severe AIS in the recessive model (P = 4.00×10−8, odds ratio [OR] = 2.05). Its association was replicated in a Chinese population (combined P = 6.43×10−12, OR = 2.21). rs12946942 is on chromosome 17q24.3 near the genes SOX9 and KCNJ2, which when mutated cause scoliosis phenotypes. Our findings will offer new insight into the etiology and progression of AIS.
doi:10.1371/journal.pone.0072802
PMCID: PMC3762929  PMID: 24023777
21.  Meta-analysis of genome-wide association studies confirms a susceptibility locus for knee osteoarthritis on chromosome 7q22 
Evangelou, Evangelos | Valdes, Ana M. | Kerkhof, Hanneke J.M | Styrkarsdottir, Unnur | Zhu, YanYan | Meulenbelt, Ingrid | Lories, Rik J. | Karassa, Fotini B. | Tylzanowski, Przemko | Bos, Steffan D. | Akune, Toru | Arden, Nigel K. | Carr, Andrew | Chapman, Kay | Cupples, L. Adrienne | Dai, Jin | Deloukas, Panos | Doherty, Michael | Doherty, Sally | Engstrom, Gunnar | Gonzalez, Antonio | Halldorsson, Bjarni V. | Hammond, Christina L. | Hart, Deborah J. | Helgadottir, Hafdis | Hofman, Albert | Ikegawa, Shiro | Ingvarsson, Thorvaldur | Jiang, Qing | Jonsson, Helgi | Kaprio, Jaakko | Kawaguchi, Hiroshi | Kisand, Kalle | Kloppenburg, Margreet | Kujala, Urho M. | Lohmander, L. Stefan | Loughlin, John | Luyten, Frank P. | Mabuchi, Akihiko | McCaskie, Andrew | Nakajima, Masahiro | Nilsson, Peter M. | Nishida, Nao | Ollier, William E.R. | Panoutsopoulou, Kalliope | van de Putte, Tom | Ralston, Stuart H. | Rivadeneira, Fernado | Saarela, Janna | Schulte-Merker, Stefan | Slagboom, P. Eline | Sudo, Akihiro | Tamm, Agu | Tamm, Ann | Thorleifsson, Gudmar | Thorsteinsdottir, Unnur | Tsezou, Aspasia | Wallis, Gillian A. | Wilkinson, J. Mark | Yoshimura, Noriko | Zeggini, Eleftheria | Zhai, Guangju | Zhang, Feng | Jonsdottir, Ingileif | Uitterlinden, Andre G. | Felson, David T | van Meurs, Joyce B. | Stefansson, Kari | Ioannidis, John P.A. | Spector, Timothy D.
Annals of the rheumatic diseases  2010;70(2):349-355.
Osteoarthritis (OA) is the most prevalent form of arthritis and accounts for substantial morbidity and disability, particularly in the elderly. It is characterized by changes in joint structure including degeneration of the articular cartilage and its etiology is multifactorial with a strong postulated genetic component. We performed a meta-analysis of four genome-wide association (GWA) studies of 2,371 knee OA cases and 35,909 controls in Caucasian populations. Replication of the top hits was attempted with data from additional ten replication datasets. With a cumulative sample size of 6,709 cases and 44,439 controls, we identified one genome-wide significant locus on chromosome 7q22 for knee OA (rs4730250, p-value=9.2×10−9), thereby confirming its role as a susceptibility locus for OA. The associated signal is located within a large (500kb) linkage disequilibrium (LD) block that contains six genes; PRKAR2B (protein kinase, cAMP-dependent, regulatory, type II, beta), HPB1 (HMG-box transcription factor 1), COG5 (component of oligomeric golgi complex 5), GPR22 (G protein-coupled receptor 22), DUS4L (dihydrouridine synthase 4-like), and BCAP29 (the B-cell receptor-associated protein 29). Gene expression analyses of the (six) genes in primary cells derived from different joint tissues confirmed expression of all the genes in the joint environment.
doi:10.1136/ard.2010.132787
PMCID: PMC3615180  PMID: 21068099
22.  Ectopic Expression of Ptf1a Induces Spinal Defects, Urogenital Defects, and Anorectal Malformations in Danforth's Short Tail Mice 
PLoS Genetics  2013;9(2):e1003204.
Danforth's short tail (Sd) is a semidominant mutation on mouse chromosome 2, characterized by spinal defects, urogenital defects, and anorectal malformations. However, the gene responsible for the Sd phenotype was unknown. In this study, we identified the molecular basis of the Sd mutation. By positional cloning, we identified the insertion of an early transposon in the Sd candidate locus approximately 12-kb upstream of Ptf1a. We found that insertion of the transposon caused overexpression of three neighboring genes, Gm13344, Gm13336, and Ptf1a, in Sd mutant embryos and that the Sd phenotype was not caused by disruption of an as-yet-unknown gene in the candidate locus. Using multiple knockout and knock-in mouse models, we demonstrated that misexpression of Ptf1a, but not of Gm13344 or Gm13336, in the notochord, hindgut, cloaca, and mesonephros was sufficient to replicate the Sd phenotype. The ectopic expression of Ptf1a in the caudal embryo resulted in attenuated expression of Cdx2 and its downstream target genes T, Wnt3a, and Cyp26a1; we conclude that this is the molecular basis of the Sd phenotype. Analysis of Sd mutant mice will provide insight into the development of the spinal column, anus, and kidney.
Author Summary
Caudal regression syndrome (CRS) is a congenital heterogeneous constellation of caudal anomalies that includes varying degrees of agenesis of the spinal column, anorectal malformations, and genitourinary anomalies. Its pathogenesis is unclear. However, it could be the result of excessive physiologic regression of the embryonic caudal region based on analyses of the various mouse mutants carrying caudal agenesis. Among the mouse mutants, the Danforth's short tail (Sd) mouse is considered a best model for human CRS. Sd is a semidominant mutation, characterized by spinal defects, urogenital defects, and anorectal malformations, thus showing phenotypic similarity to human CRS. Although Sd is known to map to mouse chromosome 2, little is known about the molecular nature of the mutation. Here, we demonstrate an insertion of one type of retrotransposon near the Ptf1a gene. This resulted in ectopic expression of Ptf1a gene in the caudal region of the embryo and downregulation of Cdx2 and its downstream targets, leading to characteristic phenotypes in Sd mouse. Thus, Sd mutant mice will provide insight into the development of the spinal column, anus, and kidney.
doi:10.1371/journal.pgen.1003204
PMCID: PMC3578775  PMID: 23436999
23.  Association Study of Polymorphisms rs4552569 and rs17095830 and the Risk of Ankylosing Spondylitis in a Taiwanese Population 
PLoS ONE  2013;8(1):e52801.
Ankylosing spondylitis (AS) is a chronic inflammation of the sacroiliac joints, spine and peripheral joints. However, the development of anklosing spondylitis is unclear. Human leukocyte antigens HLA-B27 and ERAP1 have been widely reported to be associated with AS susceptibility. A recent genome-wide association study (GWAS) showed that two new susceptibility loci between EDIL3 and HAPLN1 at 5q14.3 (rs4552569) and within ANO6 at 12q12 (rs17095830) contribute to the risk of AS in Han Chinese. In this study, we enrolled 475 AS patients and 475 healthy subjects to assess whether these genetic variations contribute to the susceptibility and the severity of AS in the Taiwanese population. The correlation between genetic polymorphisms, AS activity indexes, (namely, BASDAI, BASFI and BAS-G) and AS complications (uveitis and inflammatory bowel disease) were tested using the markers, rs4552569 and rs17095830. Although no association between rs4552569/rs17095830 genetic polymorphisms and AS susceptibility/severity was found, a significant association between rs17095830 and inflammatory bowel disease was observed in a Taiwanese population.
doi:10.1371/journal.pone.0052801
PMCID: PMC3537770  PMID: 23308121
24.  Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia 
Nature genetics  2008;40(8):999-1003.
The brachyolmias constitute a clinically and genetically heterogeneous group of skeletal dysplasias characterized by a short trunk, scoliosis and mild short stature1. Here, we identify a locus for an autosomal dominant form of brachyolmia on chromosome 12q24.1–12q24.2. Among the genes in the genetic interval, we selected TRPV4, which encodes a calcium permeable cation channel of the transient receptor potential (TRP) vanilloid family, as a candidate gene because of its cartilage-selective gene expression pattern. In two families with the phenotype, we identified point mutations in TRPV4 that encoded R616Q and V620I substitutions, respectively. Patch clamp studies of transfected HEK cells showed that both mutations resulted in a dramatic gain of function characterized by increased constitutive activity and elevated channel activation by either mechano-stimulation or agonist stimulation by arachidonic acid or the TRPV4-specific agonist 4α-phorbol 12,13-didecanoate (4αPDD). This study thus defines a previously unknown mechanism, activation of a calcium-permeable TRP ion channel, in skeletal dysplasia pathogenesis.
doi:10.1038/ng.166
PMCID: PMC3525077  PMID: 18587396
25.  A Short History of the Genome-Wide Association Study: Where We Were and Where We Are Going 
Genomics & Informatics  2012;10(4):220-225.
Recent rapid advances in genetic research are ushering us into the genome sequence era, where an individual's genome information is utilized for clinical practice. The most spectacular results of the human genome study have been provided by genome-wide association studies (GWASs). This is a review of the history of GWASs as related to my work. Further efforts are necessary to make full use of its potential power to medicine.
doi:10.5808/GI.2012.10.4.220
PMCID: PMC3543921  PMID: 23346033
genome; genome-wide association study; HapMap Project; Human Genome Project; single-nucleotide polymorphism

Results 1-25 (40)