Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  FRAX®: Prediction of Major Osteoporotic Fractures in Women from the General Population: The OPUS Study 
PLoS ONE  2013;8(12):e83436.
The aim of this study was to analyse how well FRAX® predicts the risk of major osteoporotic and vertebral fractures over 6 years in postmenopausal women from general population.
Patients and methods
The OPUS study was conducted in European women aged above 55 years, recruited in 5 centers from random population samples and followed over 6 years. The population for this study consisted of 1748 women (mean age 74.2 years) with information on incident fractures. 742 (43.1%) had a prevalent fracture; 769 (44%) and 155 (8.9%) of them received an antiosteoporotic treatment before and during the study respectively. We compared FRAX® performance with and without bone mineral density (BMD) using receiver operator characteristic (ROC) c-statistical analysis with ORs and areas under receiver operating characteristics curves (AUCs) and net reclassification improvement (NRI).
85 (4.9%) patients had incident major fractures over 6 years. FRAX® with and without BMD predicted these fractures with an AUC of 0.66 and 0.62 respectively. The AUC were 0.60, 0.66, 0.69 for history of low trauma fracture alone, age and femoral neck (FN) BMD and combination of the 3 clinical risk factors, respectively. FRAX® with and without BMD predicted incident radiographic vertebral fracture (n = 65) with an AUC of 0.67 and 0.65 respectively. NRI analysis showed a significant improvement in risk assignment when BMD is added to FRAX®.
This study shows that FRAX® with BMD and to a lesser extent also without FN BMD predict major osteoporotic and vertebral fractures in the general population.
PMCID: PMC3875449  PMID: 24386199
2.  Effects of long-term head-down-tilt bed rest and different training regimes on the coagulation system of healthy men 
Physiological Reports  2013;1(6):e00135.
Immobility plus preexisting chronic disease or acute trauma can activate the coagulation system, thus increasing the risk for thromboembolic events. The effects of long-term bed-rest immobility and microgravity on the coagulation system of healthy persons (e.g., during crewed Mars missions) have not yet been studied. The main objective of the second Berlin BedRest Study (BBR2-2) “Coagulation Part” was to investigate adaptations of the hemostatic system during long-term bed rest (60 days) under simulated microgravity (6° head-down-tilt [6°HDT]) and after mobilization in three different volunteer groups (randomly assigned to CTR= inactive control group; RE= resistive exercise only group; and RVE= resistive exercise with whole-body vibration group). In 24 males (aged 21–45 years), before, during, and after long-term bed rest, key parameters of coagulation were measured from venous blood samples: D-dimer (DD), thrombin–antithrombin III complex (TAT), and prothrombin fragment F1 + 2 (PT-F1 + 2). Additionally, modified rotational thrombelastometry (ROTEM®) analysis was performed. Times of exploratory analyses were as follows: baseline data collection 2 days before bed rest (BDC-2); eight different days of 6°HDT bed rest (HDT1–HDT60), and two different days after reambulation (R + 3 and R + 6). We found significant changes in DD, TAT, and PT-F1 + 2 over the total time course, but no consistent effect of physical interventions (RE, RVE) on these parameters. Notably, no parameter reached levels indicative of intravascular thrombin formation. All ROTEM® parameters remained within the normal range and no pathological traces were found. Sixty days of 6°HDT bed rest are not associated with pronounced activation of the coagulation system indicative of intravascular thrombus formation in healthy volunteers independent of the training type during the bed rest.
PMCID: PMC3871450  PMID: 24400137
Hemostasis; head-down tilt; immobilization; resistance training; thromboelastography
3.  Nitrosative stress in human skeletal muscle attenuated by exercise countermeasure after chronic disuse☆ 
Redox Biology  2013;1(1):514-526.
Activity-induced nitric oxide (NO) imbalance and “nitrosative stress” are proposed mechanisms of disrupted Ca2+ homeostasis in atrophic skeletal muscle. We thus mapped S-nitrosylated (SNO) functional muscle proteins in healthy male subjects in a long-term bed rest study (BBR2-2 Study) without and with exercise as countermeasure in order to assess (i) the negative effects of chronic muscle disuse by nitrosative stress, (ii) to test for possible attenuation by exercise countermeasure in bed rest and (iii) to identify new NO target proteins. Muscle biopsies from calf soleus and hip vastus lateralis were harvested at start (Pre) and at end (End) from a bed rest disuse control group (CTR, n=9) and two bed rest resistive exercise groups either without (RE, n=7) or with superimposed vibration stimuli (RVE, n=7). At subcellular compartments, strong anti-SNO-Cys immunofluorescence patterns in control muscle fibers after bed rest returned to baseline following vibration exercise. Total SNO-protein levels, Nrf-2 gene expression and nucleocytoplasmic shuttling were changed to varying degrees in all groups. Excess SNO-protein levels of specific calcium release/uptake proteins (SNO-RyR1, –SERCA1 and –PMCA) and of contractile myosin heavy chains seen in biopsy samples of chronically disused skeletal muscle were largely reduced by vibration exercise. We also identified NOS1 as a novel NO target in human skeletal muscle controlled by activity driven auto-nitrosylation mechanisms. Our findings suggest that aberrant levels of functional SNO-proteins represent signatures of uncontrolled nitrosative stress management in disused human skeletal muscle that can be offset by exercise as countermeasure.
Graphical abstract
•NOS1 is auto-S-nitrosylated (SNO-NOS1) in human skeletal muscle.•Excess levels of functional SNO-proteins in disused-induced muscle atrophy.•Recovered levels of functional SNO-proteins by exercise countermeasure.•Aberrant levels of SNO-proteins are signatures of nitrosative stress management.•Vibration intervention induced anti-oxidative master gene Nrf2 myonuclear shuttling.
PMCID: PMC3830069  PMID: 24251120
Nitric oxide synthase; Calcium-release channels; Calcium ATPase; Nitrosative stress; Nrf-2; Skeletal muscle; Calcium homeostasis
4.  Progressive Adaptation in Physical Activity and Neuromuscular Performance during 520d Confinement 
PLoS ONE  2013;8(3):e60090.
To understand whether prolonged confinement results in reductions in physical activity and adaptation in the musculoskeletal system, six subjects were measured during 520 d isolation in the Mars500 study. We tested the hypothesis that physical activity reduces in prolonged confinement and that this would be associated with decrements of neuromuscular performance. Physical activity, as measured by average acceleration of the body’s center of mass (“activity temperature”) using the actibelt® device, decreased progressively over the course of isolation (p<0.00001). Concurrently, countermovement jump power and single-leg hop force decreased during isolation (p<0.001) whilst grip force did not change (p≥0.14). Similar to other models of inactivity, greater decrements of neuromuscular performance occurred in the lower-limb than in the upper-limb. Subject motivational state increased non-significantly (p = 0.20) during isolation, suggesting reductions in lower-limb neuromuscular performance were unrelated to motivation. Overall, we conclude that prolonged confinement is a form of physical inactivity and is associated with adaptation in the neuromuscular system.
PMCID: PMC3610758  PMID: 23555896
6.  The effects of rehabilitation on the muscles of the trunk following prolonged bed rest 
European Spine Journal  2010;20(5):808-818.
Microgravity and inactivity due to prolonged bed rest have been shown to result in atrophy of spinal extensor muscles such as the multifidus, and either no atrophy or hypertrophy of flexor muscles such as the abdominal group and psoas muscle. These effects are long-lasting after bed rest and the potential effects of rehabilitation are unknown. This two-group intervention study aimed to investigate the effects of two rehabilitation programs on the recovery of lumbo-pelvic musculature following prolonged bed rest. 24 subjects underwent 60 days of head down tilt bed rest as part of the 2nd Berlin BedRest Study (BBR2-2). After bed rest, they underwent one of two exercise programs, trunk flexor and general strength (TFS) training or specific motor control (SMC) training. Magnetic resonance imaging of the lumbo-pelvic region was conducted at the start and end of bed rest and during the recovery period (14 and 90 days after re-ambulation). Cross-sectional areas (CSAs) of the multifidus, psoas, lumbar erector spinae and quadratus lumborum muscles were measured from L1 to L5. Morphological changes including disc volume, spinal length, lordosis angle and disc height were also measured. Both exercise programs restored the multifidus muscle to pre-bed-rest size, but further increases in psoas muscle size were seen in the TFS group up to 14 days after bed rest. There was no significant difference in the number of low back pain reports for the two rehabilitation groups (p = .59). The TFS program resulted in greater decreases in disc volume and anterior disc height. The SMC training program may be preferable to TFS training after bed rest as it restored the CSA of the multifidus muscle without generating potentially harmful compressive forces through the spine.
PMCID: PMC3082685  PMID: 20593204
Bed rest; Magnetic resonance imaging; Gravity; Multifidus muscle; Psoas muscle; Rehabilitation
8.  Adverse Reactions and Drug–Drug Interactions in the Management of Women with Postmenopausal Osteoporosis 
Calcified Tissue International  2011;89(2):91-104.
The pharmacological management of disease should involve consideration of the balance between the beneficial effects of treatment on outcome and the probability of adverse effects. The aim of this review is to explore the risk of adverse drug reactions and drug–drug interactions with treatments for postmenopausal osteoporosis. We reviewed evidence for adverse reactions from regulatory documents, randomized controlled trials, pharmacovigilance surveys, and case series. Bisphosphonates are associated with gastrointestinal effects, musculoskeletal pain, and acute-phase reactions, as well as, very rarely, atrial fibrillation, atypical fracture, delayed fracture healing, osteonecrosis of the jaw, hypersensitivity reactions, and renal impairment. Cutaneous effects and osteonecrosis of the jaw are of concern for denosumab (both very rare), though there are no pharmacovigilance data for this agent yet. The selective estrogen receptor modulators are associated with hot flushes, leg cramps, and, very rarely, venous thromboembolism and stroke. Strontium ranelate has been linked to hypersensitivity reactions and venous thromboembolism (both very rare) and teriparatide with headache, nausea, dizziness, and limb pain. The solidity of the evidence base depends on the frequency of the reaction, and causality is not always easy to establish for the very rare adverse reactions. Drug–drug interactions are rare. Osteoporosis treatments are generally safe and well tolerated, though they are associated with a few very rare serious adverse reactions. While these are a cause for concern, the risk should be weighed against the benefits of treatment itself, i.e., the prevention of osteoporotic fracture.
PMCID: PMC3135835  PMID: 21637997
Osteoporosis; Adverse drug reaction; Drug–drug interaction; Bisphosphonate; Denosumab; SERM; Strontium ranelate; Teriparatide
9.  Genome-Wide Association Study Using Extreme Truncate Selection Identifies Novel Genes Affecting Bone Mineral Density and Fracture Risk 
PLoS Genetics  2011;7(4):e1001372.
Osteoporotic fracture is a major cause of morbidity and mortality worldwide. Low bone mineral density (BMD) is a major predisposing factor to fracture and is known to be highly heritable. Site-, gender-, and age-specific genetic effects on BMD are thought to be significant, but have largely not been considered in the design of genome-wide association studies (GWAS) of BMD to date. We report here a GWAS using a novel study design focusing on women of a specific age (postmenopausal women, age 55–85 years), with either extreme high or low hip BMD (age- and gender-adjusted BMD z-scores of +1.5 to +4.0, n = 1055, or −4.0 to −1.5, n = 900), with replication in cohorts of women drawn from the general population (n = 20,898). The study replicates 21 of 26 known BMD–associated genes. Additionally, we report suggestive association of a further six new genetic associations in or around the genes CLCN7, GALNT3, IBSP, LTBP3, RSPO3, and SOX4, with replication in two independent datasets. A novel mouse model with a loss-of-function mutation in GALNT3 is also reported, which has high bone mass, supporting the involvement of this gene in BMD determination. In addition to identifying further genes associated with BMD, this study confirms the efficiency of extreme-truncate selection designs for quantitative trait association studies.
Author Summary
Osteoporotic fracture is a major cause of early mortality and morbidity in the community. To identify genes associated with osteoporosis, we have performed a genome-wide association study. In order to improve study power and to address the demographic group of highest risk from osteoporotic fracture, we have used a unique study design, studying 1,955 postmenopausal women with either extreme high or low hip bone mineral density. We then confirmed our findings in 20,898 women from the general population. Our study replicated 21 of 26 known osteoporosis genes, and it identified a further six novel loci (in or nearby CLCN7, GALNT3, IBSP, LTBP3, RSPO3, and SOX4). For one of these loci, GALTN3, we demonstrate in a mouse model that a loss-of-function genetic mutation in GALNT3 causes high bone mass. These findings report novel mechanisms by which osteoporosis can arise, and they significantly add to our understanding of the aetiology of the disease.
PMCID: PMC3080863  PMID: 21533022
10.  Strontium ranelate and alendronate have differing effects on distal tibia bone microstructure in women with osteoporosis 
Rheumatology International  2010;30(10):1341-1348.
The structural basis of the antifracture efficacy of strontium ranelate and alendronate is incompletely understood. We compared the effects of strontium ranelate and alendronate on distal tibia microstructure over 2 years using HR-pQCT. In this pre-planned, interim, intention-to-treat analysis at 12 months, 88 osteoporotic postmenopausal women (mean age 63.7 ± 7.4) were randomized to strontium ranelate 2 g/day or alendronate 70 mg/week in a double-placebo design. Primary endpoints were changes in microstructure. Secondary endpoints included lumbar and hip areal bone mineral density (aBMD), and bone turnover markers. This trial is registered with, number ISRCTN82719233. Baseline characteristics of the two groups were similar. Treatment with strontium ranelate was associated with increases in mean cortical thickness (CTh, 5.3%), cortical area (4.9%) and trabecular density (2.1%) (all P < 0.001, except cortical area P = 0.013). No significant changes were observed with alendronate. Between-group differences in favor of strontium ranelate were observed for CTh, cortical area, BV/TV and trabecular density (P = 0.045, 0.041, 0.048 and 0.035, respectively). aBMD increased to a similar extent with strontium ranelate and alendronate at the spine (5.7% versus 5.1%, respectively) and total hip (3.3% versus 2.2%, respectively). No significant changes were observed in remodeling markers with strontium ranelate, while suppression was observed with alendronate. Within the methodological constraints of HR-pQCT through its possible sensitivity to X-ray attenuation of different minerals, strontium ranelate had greater effects than alendronate on distal tibia cortical thickness and trabecular volumetric density.
PMCID: PMC2908746  PMID: 20512336
Biochemical markers; Bone mineral density; Cortical bone; Microstructure; Trabecular bone
11.  Bisphosphonates in the management of postmenopausal osteoporosis – optimizing efficacy in clinical practice 
Clinical Interventions in Aging  2008;3(2):279-297.
Nitrogen-containing bisphosphonates are potent inhibitors of osteoclastic bone resorption. With their individually proven efficacy to significantly reduce the incidence of vertebral and/or non-vertebral fractures and with their overall beneficial safety profile, alendronate, ibandronate, risedronate, and zoledronate are considered today a treatment of first choice in postmenopausal osteoporosis. However, treatment effects in an individual patient and cost-effectiveness in public health perspective are vitally dependent on the long-term patient adherence as well as on compliance and persistence. As compliance and persistence with daily oral bisphosphonates are shown to be suboptimal in many patients, leading to an increased fracture incidence in non-compliant patients, there is a need to improve overall adherence for bisphosphonate treatment in order to achieve maximum treatment effects. One option is to extend dosing intervals to weekly (alendronate, risedronate) or monthly (ibandronate) oral regimens. Less frequent oral regimens are generally preferred by majority of patients. Another alternative is intravenous, instead of oral application (ibandronate, zoledronate). Treatment acceptance could be further improved by IV bisphosphonates with their benefit of only quarterly, or even once-yearly, application. Treatment decisions should be based on anti-fracture efficacy data first. In addition, to ensure best possible patient adherence and maximum treatment benefits, physicians should consider individual patient conditions affecting compliance and persistence as well as patient preferences.
PMCID: PMC2546473  PMID: 18686751
postmenopausal osteoporosis; bisphosphonates; fracture risk reduction; adherence; dosing frequencies; patient considerations

Results 1-11 (11)