PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Preclinical Studies in the mdx Mouse Model of Duchenne Muscular Dystrophy with the Histone Deacetylase Inhibitor Givinostat 
Molecular Medicine  2013;19(1):79-87.
Previous work has established the existence of dystrophin–nitric oxide (NO) signaling to histone deacetylases (HDACs) that is deregulated in dystrophic muscles. As such, pharmacological interventions that target HDACs (that is, HDAC inhibitors) are of potential therapeutic interest for the treatment of muscular dystrophies. In this study, we explored the effectiveness of long-term treatment with different doses of the HDAC inhibitor givinostat in mdx mice—the mouse model of Duchenne muscular dystrophy (DMD). This study identified an efficacy for recovering functional and histological parameters within a window between 5 and 10 mg/kg/d of givinostat, with evident reduction of the beneficial effects with 1 mg/kg/d dosage. The long-term (3.5 months) exposure of 1.5-month-old mdx mice to optimal concentrations of givinostat promoted the formation of muscles with increased cross-sectional area and reduced fibrotic scars and fatty infiltration, leading to an overall improvement of endurance performance in treadmill tests and increased membrane stability. Interestingly, a reduced inflammatory infiltrate was observed in muscles of mdx mice exposed to 5 and 10 mg/kg/d of givinostat. A parallel pharmacokinetic/pharmacodynamic analysis confirmed the relationship between the effective doses of givinostat and the drug distribution in muscles and blood of treated mice. These findings provide the preclinical basis for an immediate translation of givinostat into clinical studies with DMD patients.
doi:10.2119/molmed.2013.00011
PMCID: PMC3667212  PMID: 23552722
2.  A Phase I Dose-Escalation Study of Danusertib (PHA-739358) Administered as a 24-hour Infusion With and Without G-CSF in a 14-day Cycle in Patients with Advanced Solid Tumors 
Purpose
This study was conducted to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of the intravenous pan-aurora kinase inhibitor PHA-739358, danusertib, in patients with advanced solid tumors.
Experimental Design
In Part 1, patients received escalating doses of danusertib (24-h infusion every 14 days) without filgrastim (G-CSF). Febrile neutropenia was the dose-limiting toxicity without G-CSF. Further dose escalation was performed in part 2 with G-CSF. Blood samples were collected for danusertib pharmacokinetics and pharmacodynamics. Skin biopsies were collected to assess histone H3 phosphorylation (pH3).
Results
Fifty-six patients were treated, 40 in part 1 and 16 in part 2. Febrile neutropenia was the dose limiting toxicity in Part 1 without G-CSF. Most other adverse events were grade 1–2, occurring at doses ≥360 mg/m2 with similar incidence in parts 1 and 2. The MTD without G-CSF is 500 mg/m2. The recommended phase 2 dose (RP2D) in Part 2 with G-CSF is 750 mg/m2. Danusertib demonstrated dose-proportional pharmacokinetics in parts 1 and 2 with a median half-life of 18–26 hours. pH3 modulation in skin biopsies was observed at ≥500 mg/m2. One patient with refractory small cell lung cancer (1000 mg/m2 with G-CSF) had an objective response lasting 23 weeks. One patient with refractory ovarian cancer had 27% tumor regression and 30% CA125 decline.
Conclusions
Danusertib was well tolerated with target inhibition in skin at ≥500 mg/m2. Preliminary evidence of anti-tumor activity, including a PR and several occurrences of prolonged stable disease (SD), was seen across a variety of advanced refractory cancers. Phase II studies are ongoing.
doi:10.1158/1078-0432.CCR-09-1445
PMCID: PMC2826106  PMID: 19825950
Danusertib; PHA-739358; Aurora Kinase Inhibitor; phase I trial; solid tumors

Results 1-2 (2)