PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Molecular Analysis of Non-Small Cell Lung Cancer (NSCLC) Identifies Subsets with Different Sensitivity to Insulin like Growth Factor I Receptor (IGF-IR) Inhibition 
Purpose
Identify molecular determinants of sensitivity of NSCLC to anti-insulin like growth factor receptor (IGF-IR) therapy.
Experimental Design
216 tumor samples were investigated. 165 consisted of retrospective analyses of banked tissue and an additional 51 were from patients enrolled in a phase 2 study of figitumumab (F), a monoclonal antibody against the IGF-IR, in stage IIIb/IV NSCLC. Biomarkers assessed included IGF-IR, EGFR, IGF-2, IGF-2R, IRS-1, IRS-2, vimentin and E-cadherin. Sub-cellular localization of IRS-1 and phosphorylation levels of MAPK and Akt1 were also analyzed.
Results
IGF-IR was differentially expressed across histological subtypes (P=0.04), with highest levels observed in squamous cell tumors. Elevated IGF-IR expression was also observed in a small number of squamous cell tumors responding to chemotherapy combined with F (p=0.008). Since no other biomarker/response interaction was observed using classical histological sub-typing, a molecular approach was undertaken to segment NSCLC into mechanism-based subpopulations. Principal component analysis and unsupervised Bayesian clustering identified 3 NSCLC subsets that resembled the steps of the epithelial-to-mesenchymal transition: E-cadherin high/IRS-1 low (Epithelial-like), E-cadherin intermediate/IRS-1 high (Transitional) and E-cadherin low/IRS-1 low (Mesenchymal-like). Several markers of the IGF-IR pathway were over-expressed in the Transitional subset. Furthermore, a higher response rate to the combination of chemotherapy and F was observed in Transitional tumors (71%) compared to those in the Mesenchymal-like subset (32%, p=0.03). Only one Epithelial-like tumor was identified in the phase 2 study, suggesting that advanced NSCLC has undergone significant de-differentiation at diagnosis.
Conclusion
NSCLC comprises molecular subsets with differential sensitivity to IGF-IR inhibition.
doi:10.1158/1078-0432.CCR-10-0089
PMCID: PMC2952544  PMID: 20670944
IGF-IR; Figitumumab; NSCLC
2.  Safety, Pharmacokinetics, and Pharmacodynamics of the Insulin-Like Growth Factor Type 1 Receptor Inhibitor Figitumumab (CP-751,871) in Combination with Paclitaxel and Carboplatin 
Introduction
This phase 1 study was conducted to determine the recommended phase 2 dose of the selective insulin-like growth factor type 1 receptor (IGF-IR) inhibitor figitumumab (F, CP-751,871) given in combination with paclitaxel and carboplatin in patients with advanced solid tumors.
Methods
Patients received paclitaxel 200 mg/m2, carboplatin (area under the curve of 6), and F (0.05–20 mg/kg) q3 weeks for up to six cycles. Patients with objective response or stable disease were eligible to receive additional cycles of single agent F until disease progression. Safety, efficacy, pharmacokinetic, and pharmacodynamic endpoints were investigated.
Results
Forty-two patients, including 35 with stages IIIB and IV non-small cell lung cancer (NSCLC), were enrolled in eight dose escalation cohorts. A maximum tolerated dose was not identified. Severe adverse events possibly related to F included fatigue, diarrhea, hyperglycemia, gamma glutamyl transpeptidase elevation, and thrombocytopenia (one case each). F plasma exposure parameters increased with dose. Fifteen objective responses (RECIST) were reported, including two complete responses in NSCLC and ovarian carcinoma. Notably, levels of bioactive IGF-1 seemed to influence response to treatment with objective responses in patients with a high baseline-free IGF-1 to IGF binding protein-3 ratio seen only in the 10 and 20 mg/kg dosing cohorts.
Conclusions
F was well tolerated in combination with paclitaxel and carboplatin. Based on its favorable safety, pharmacokinetic, and pharmacodynamic properties, the maximal feasible dose of 20 mg/kg has been selected for further investigation.
doi:10.1097/JTO.0b013e3181ba2f1d
PMCID: PMC2941876  PMID: 19745765
IGF-1R; Figitumumab; CP-751,871; NSCLC
3.  Treatment rationale and study design for a phase III, double-blind, placebo-controlled study of maintenance pemetrexed plus best supportive care versus best supportive care immediately following induction treatment with pemetrexed plus cisplatin for advanced nonsquamous non-small cell lung cancer 
BMC Cancer  2010;10:85.
Background
To improve the efficacy of first-line therapy for advanced non-small cell lung cancer (NSCLC), additional maintenance chemotherapy may be given after initial induction chemotherapy in patients who did not progress during the initial treatment, rather than waiting for disease progression to administer second-line treatment. Maintenance therapy may consist of an agent that either was or was not present in the induction regimen. The antifolate pemetrexed is efficacious in combination with cisplatin for first-line treatment of advanced NSCLC and has shown efficacy as a maintenance agent in studies in which it was not included in the induction regimen. We designed a phase III study to determine if pemetrexed maintenance therapy improves progression-free survival (PFS) and overall survival (OS) after cisplatin/pemetrexed induction therapy in patients with advanced nonsquamous NSCLC. Furthermore, since evidence suggests expression levels of thymidylate synthase, the primary target of pemetrexed, may be associated with responsiveness to pemetrexed, translational research will address whether thymidylate synthase expression correlates with efficacy outcomes of pemetrexed.
Methods/Design
Approximately 900 patients will receive four cycles of induction chemotherapy consisting of pemetrexed (500 mg/m2) and cisplatin (75 mg/m2) on day 1 of a 21-day cycle. Patients with an Eastern Cooperative Oncology Group performance status of 0 or 1 who have not progressed during induction therapy will randomly receive (in a 2:1 ratio) one of two double-blind maintenance regimens: pemetrexed (500 mg/m2 on day 1 of a 21-day cycle) plus best supportive care (BSC) or placebo plus BSC. The primary objective is to compare PFS between treatment arms. Secondary objectives include a fully powered analysis of OS, objective tumor response rate, patient-reported outcomes, resource utilization, and toxicity. Tumor specimens for translational research will be obtained from consenting patients before induction treatment, with a second biopsy performed in eligible patients following the induction phase.
Discussion
Although using a drug as maintenance therapy that was not used in the induction regimen exposes patients to an agent with a different mechanism of action, evidence suggests that continued use of an agent present in the induction regimen as maintenance therapy enables the identification of patients most likely to benefit from maintenance treatment.
Trial Registration
Trial Registry: Clinicaltrials.gov
Registration number: NCT00789373
Trial abbreviation: H3E-EW-S124
doi:10.1186/1471-2407-10-85
PMCID: PMC2847958  PMID: 20211022
4.  PARAMOUNT: Descriptive Subgroup Analyses of Final Overall Survival for the Phase III Study of Maintenance Pemetrexed versus Placebo Following Induction Treatment with Pemetrexed Plus Cisplatin for Advanced Nonsquamous Non–Small-Cell Lung Cancer 
Journal of Thoracic Oncology  2014;9(2):205-213.
Introduction:
The PARAMOUNT phase III trial demonstrated that pemetrexed continuation maintenance significantly reduced the risk of disease progression (hazard ratio = 0.62) and death (hazard ratio = 0.78) versus placebo in patients with advanced nonsquamous non–small-cell lung cancer. To further understand the survival data, descriptive subgroup analyses were undertaken.
Methods:
Nine hundred thirty-nine patients received induction therapy (four 21-day cycles pemetrexed 500 mg/m2 and cisplatin 75 mg/m2), after which 539 nonprogressing patients with an Eastern Cooperative Oncology Group performance status (PS) of 0/1 were randomized (2:1) to maintenance pemetrexed (500 mg/m2) cycles or placebo until disease progression.
Results:
Baseline characteristics of patients surviving for longer periods were comparable to patients surviving shorter periods, suggesting overall survival (OS) benefit for all subgroups of patients on maintenance therapy. An examination of type and severity of induction adverse events also found no association with survival duration. Response to induction (tumor response versus stable disease) was not determinate of pemetrexed maintenance OS outcome as assessed by waterfall plot and scattergrams and by the distribution of patients among various OS intervals. The length of the interval before beginning maintenance therapy (<7 days versus ≥7/≤30 days) also did not impact the survival results. PS, a known prognostic factor, was the only baseline characteristic associated with improved OS; however, both PS 0 and PS 1 patients exhibited a survival benefit from pemetrexed maintenance.
Conclusions:
In PARAMOUNT, the OS benefit was seen across all subgroups. Other than PS, no baseline or clinical parameter clearly identified a subgroup more likely to benefit. Maintenance treatment decisions should be made on an individual basis.
doi:10.1097/JTO.0000000000000076
PMCID: PMC4132027  PMID: 24419418
Nonsquamous non–small-cell lung cancer; Pemetrexed; Cisplatin; Induction; Maintenance; Phase III; Survival

Results 1-4 (4)