Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Phase I Pharmacologic and Biologic Study of Ramucirumab (IMC-1121B), a Fully Human Immunoglobulin G1 Monoclonal Antibody Targeting the Vascular Endothelial Growth Factor Receptor-2 
Journal of Clinical Oncology  2010;28(5):780-787.
To evaluate the safety, maximum-tolerated dose (MTD), pharmacokinetics (PKs), pharmacodynamics, and preliminary anticancer activity of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor (VEGFR)-2.
Patients and Methods
Patients with advanced solid malignancies were treated once weekly with escalating doses of ramucirumab. Blood was sampled for PK studies throughout treatment. The effects of ramucirumab on circulating vascular endothelial growth factor-A (VEGF-A), soluble VEGFR-1 and VEGFR-2, tumor perfusion, and vascularity using dynamic contrast-enhanced magnetic resonance imaging were assessed.
Thirty-seven patients were treated with 2 to 16 mg/kg of ramucirumab. After one patient each developed dose-limiting hypertension and deep venous thrombosis at 16 mg/kg, the next lower dose (13 mg/kg) was considered the MTD. Nausea, vomiting, headache, fatigue, and proteinuria were also noted. Four (15%) of 27 patients with measurable disease had a partial response (PR), and 11 (30%) of 37 patients had either a PR or stable disease lasting at least 6 months. PKs were characterized by dose-dependent elimination and nonlinear exposure consistent with saturable clearance. Mean trough concentrations exceeded biologically relevant target levels throughout treatment at all dose levels. Serum VEGF-A increased 1.5 to 3.5 times above pretreatment values and remained in this range throughout treatment at all dose levels. Tumor perfusion and vascularity decreased in 69% of evaluable patients.
Objective antitumor activity and antiangiogenic effects were observed over a wide range of dose levels, suggesting that ramucirumab may have a favorable therapeutic index in treating malignancies amenable to VEGFR-2 inhibition.
PMCID: PMC2834394  PMID: 20048182
2.  A phase I study of bortezomib, etoposide and carboplatin in patients with advanced solid tumors refractory to standard therapy 
Investigational new drugs  2008;27(1):53-62.
To evaluate the toxicity, pharmacological, and biological properties of the combination of bortezomib, etoposide, and carboplatin in adults with advanced solid malignancies.
Patients and methods
Patients received escalating doses of bortezomib, etoposide, and carboplatin every 21 days. Surrogate markers of angiogenesis were evaluated.
Twenty-four patients received 64 courses of therapy. The most common treatment-related adverse events were myelosuppression. Dose-limiting grade 3 and 4 neutropenia and thrombocytopenia were observed when bortezomib was given on days 1, 4, 8, 11. With revised dosing, the maximum tolerated dose (MTD) of bortezomib 0.75 mg/m2 (days 1, 8), etoposide 75 mg/m2 (days 1–3), and carboplatin AUC 5 (day 1) was well tolerated, and are the recommended doses for further studies with this combination. No objective responses were observed, however stable disease was noted for greater or equal to four cycles in nine highly refractory patients.
PMCID: PMC2829404  PMID: 18618082
Bortezomib; Combination chemotherapy; Phase I clinical trial; Proteasome inhibitor
3.  A phase I safety, pharmacological, and biological study of the farnesyl protein transferase inhibitor, lonafarnib (SCH 663366), in combination with cisplatin and gemcitabine in patients with advanced solid tumors 
This phase I study was conducted to evaluate the safety, tolerability, pharmacological properties and biological activity of the combination of the lonafarnib, a farnesylproteintransferase (FTPase) inhibitor, with gemcitabine and cisplatin in patients with advanced solid malignancies.
Experimental design
This was a single institution study to determine the maximal tolerated dose (MTD) of escalating lonafarnib (75–125 mg po BID) with gemcitabine (750–1,000 mg/m2 on days 1, 8, 15) and fixed cisplatin (75 mg/m2 day 1) every 28 days. Due to dose-limiting toxicities (DLTs) of neutropenia and thrombocytopenia in initial patients, these patients were considered “heavily pretreated” and the protocol was amended to limit prior therapy and re-escalate lonafarnib in “less heavily pre-treated patients” on 28-day and 21-day schedules. Cycle 1 and 2 pharmacokinetics (PK), and farnesylation of the HDJ2 chaperone protein and FPTase activity were analyzed.
Twenty-two patients received 53 courses of therapy. Nausea, vomiting, and fatigue were frequent in all patients. Severe toxicities were observed in 91% of patients: neutropenia (41%), nausea (36%), thrombocytopenia (32%), anemia (23%) and vomiting (23%). Nine patients withdrew from the study due to toxicity. DLTs of neutropenia, febrile neutropenia, thrombocytopenia, and fatigue limited dose-escalation on the 28-day schedule. The MTD was established as lonafarnib 75 mg BID, gemcitabine 750 mg/m2 days 1, 8, 15, and cisplatin 75 mg/m2 in heavily pre-treated patients. The MTD in the less heavily pre-treated patients could not be established on the 28-day schedule as DLTs were observed at the lowest dose level, and dose escalation was not completed on the 21-day schedule due to early study termination by the Sponsor. No PK interactions were observed. FTPase inhibition was not observed at the MTD, however HDJ-2 gel shift was observed in one patient at the 100 mg BID lonafarnib dose. Anti-cancer activity was observed: four patients had stable disease lasting >2 cycles, one subject had a complete response, and another had a partial response, both with metastatic breast cancer.
Lonafarnib 75 mg BID, gemcitabine 750 mg/m2 days 1, 8, 15, and cisplatin 75 mg/m2 day 1 on a 28-day schedule was established as the MTD. Lonafarnib did not demonstrate FTPase inhibition at these doses. Despite the observed efficacy, substantial toxicity and questionable contribution of anti-tumor activity of lonafarnib to gemcitabine and cisplatin limits further exploration of this combination.
PMCID: PMC2813768  PMID: 18058098
Lonafarnib; SCH66336; Cisplatin; Gemcitabine; Farnesyltransferase; Phase I; Pharmacokinetics
4.  A phase I study of gefitinib, capecitabine, and celecoxib in patients with advanced solid tumors 
Molecular cancer therapeutics  2008;7(12):3685.
This phase I study was designed to determine the maximum tolerated dose (MTD) and toxicity profile of the combination of gefitinib, capecitabine, and celecoxib in patients with advanced solid tumors. Patients were treated with escalating doses of gefitinib once daily, capecitabine twice daily (14 of 28 days), and celecoxib twice daily. Plasma samples for biomarkers were obtained at baseline and weekly for the first 2 cycles. Pharmacokinetic variables were correlated with toxicity and presence of biological effect. Tumor biopsies from 5 patients were analyzed for changes in tumor metabolic activity by nuclear magnetic resonance spectroscopy. [18F]fluororodeoxyglucose positron emission tomography was done as a correlate in 6 patients at the MTD. Thirty-nine patients received 168 cycles of therapy. The dose-limiting toxicities observed included nausea, dehydration and nausea, diarrhea, and stomatitis. The MTD was 250 mg/d gefitinib (days 1–14) and 2,000 mg/m2/d capecitabine divided twice daily (days 8–21) every 28 days. Celecoxib was eliminated due to concerns of increased risk for cardiovascular toxicity, although no patients in this study had cardiac events. One patient with cholangiocarcinoma had a confirmed partial response. Fourteen of 39 (36%) patients maintained prolonged stable disease for a median of 4 months (range, 3–24 months). [18F]fluorodeoxyglulucose positron emission tomography scan and metabolomic analyses revealed differences in metabolic response to gefitinib versus capecitabine. The combination of gefitinib and capecitabine is well tolerated and appears to have activity against certain advanced solid tumors, providing a rationale for further evaluation in advanced solid malignancies.
PMCID: PMC2813692  PMID: 19074845
5.  A phase I pharmacological and biological study of PI-88 and docetaxel in patients with advanced malignancies 
This study evaluated the safety, toxicity, pharmacological properties and biological activity of PI-88, a heparanase endoglycosidase enzyme inhibitor, with fixed weekly docetaxel in patients with advanced solid malignancies.
Experimental design
This was a phase I study to determine the maximal-tolerated dose of escalating doses of PI-88 administered subcutaneously for 4 days per week, along with docetaxel 30 mg/m2 given on days 1, 8, 15 of a 28-day schedule.
Sixteen patients received a total of 42 courses of therapy. No dose-limiting toxicities were observed despite escalation to the highest planned dose level of PI-88 (250 mg/day). Frequent minor toxicities included fatigue (38%), dysgeusia (28.5%), thrombocytopenia (12%), diarrhea (14%), nausea (12%), and emesis (10%) in the 42 courses. No significant bleeding complications were observed. One patient developed a positive anti-heparin antibody test/serotonin releasing assay with positive anti-platelet factor 4/PI-88 antibodies and grade 1 thrombocytopenia in cycle 5, and was withdrawn from the study without any sequelae. PI-88 plasma concentrations (mirrored by APTT) and urinary elimination were linear and dose-proportional. Docetaxel did not alter the pharmacokinetic (PK) profile of PI-88, nor did PI-88 affect docetaxel PK. No significant relationship was determined between plasma or urine FGF-2, or plasma VEGF levels and PI-88 dose/response. Although no objective responses were observed; 9 of the 15 evaluable patients had stable disease for greater than two cycles of therapy.
PI-88 administered at 250 mg/day for 4 days each week for 3 weeks with docetaxel 30 mg/m2 on days 1, 8 and 15, every 28 days, was determined to be the recommended dose level for phase II evaluation. This combination was well tolerated without severe toxicities or PK interactions.
PMCID: PMC2813677  PMID: 18320191
PI-88; Docetaxel; Heparanase inhibitor; Angiogenesis; Clinical trial; Advanced malignancies
6.  A Phase I and Pharmacokinetic Study of the Oral Histone Deacetylase Inhibitor, MS-275, in Patients with Refractory Solid Tumors and Lymphomas 
To evaluate the toxicity profile, pharmacologic, and biological properties of 3-pyridylmethyl N-{4-[(2-aminophenyl)carbamoyl]benzyl}carbamate (MS-275), a histone deacetylase inhibitor, when administered orally on three different dosing schedules.
Experimental Design
Patients with advanced solid malignancies and lymphomas were treated on three dose schedules: once every other week, twice weekly for 3 weeks every 28 days, and once weekly for 3 weeks every 28 days. First-cycle plasma pharmacokinetics and peripheral blood mononuclear cell histone acetylation were determined.
Twenty-seven patients received ≥149 courses of treatment. Hypophosphatemia and asthenia were dose limiting on the weekly and twice-weekly dosing schedules; there was no dose-limiting toxicity on the every other week schedule. Pharmacokinetic variables revealed dose-dependent and dose-proportional increases. Two of 27 patients showed partial remissions, including one patient with metastatic melanoma who had a partial response and has remained on study for >5 years. Six patients showed prolonged disease stabilization. Levels of histone H3 and H4 acetylation in peripheral blood mononuclear cells increased qualitatively but with a high degree of interpatient variation.
MS-275 is well tolerated at doses up to 6 mg/m2 every other week or 4 mg/m2 weekly for 3 weeks followed by 1 week of rest and results in biologically relevant plasma concentrations and antitumor activity. Twice-weekly dosing was not tolerable due to asthenia, and further evaluation of this schedule was halted. The recommended dose for further disease-focused studies is 4 mg/m2 given weekly for 3 weeks every 28 days or 2 to 6 mg/m2 given once every other week.
PMCID: PMC2813676  PMID: 18579665

Results 1-6 (6)