PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Methylation of the Candidate Biomarker TCF21 Is Very Frequent Across A Spectrum of Early Stage Non-Small Cell Lung Cancers 
Cancer  2010;117(3):606-617.
Background
The transcription factor TCF21 is involved in mesenchymal-to-epithelial differentiation and was shown to be aberrantly hypermethylated in lung and head and neck cancers. Because of its reported high frequency of hypermethylation in lung cancer, we sought to characterize the stages and types of non-small cell lung cancer (NSCLC) that are hypermethylated and to define the frequency of hypermethylation and associated “second hits”.
Methods
We determined TCF21 promoter hypermethylation in 105 NSCLC including various stages and histologies in smokers and nonsmokers. Additionally, we examined TCF21 loss-of-heterozygosity and mutational status. We also assayed 22 cancer cell lines from varied tissue origins. We validated and expanded our NSCLC results by examining TCF21 immunohistochemical expression on a tissue microarray containing 300 NSCLC cases.
Results
Overall, 81% of NSCLC samples showed TCF21 promoter hypermethylation and 84% showed decreased TCF21 protein expression. Multivariate analysis showed that TCF21 expression, although below normal in both histologies, was lower in adenocarcinoma than squamous cell carcinoma, and was not independently correlated with gender, smoking and EGFR mutation status, or clinical outcome. Cell lines from other cancer types also showed frequent TCF21 promoter hypermethylation.
Conclusions
Hypermethylation and decreased expression of TCF21 were tumor-specific and very frequent in all NSCLC, even early-stage disease, thus making TCF21 a potential candidate methylation biomarker for early-stage NSCLC screening. TCF21 hypermethylation in a variety of tumor cell lines suggests it may also be a valuable methylation biomarker in other tumor types.
doi:10.1002/cncr.25472
PMCID: PMC3023841  PMID: 20945327
TCF21; methylation; biomarker; lung cancer; screening
2.  Fluorescence in situ hybridization gene amplification analysis of EGFR and HER2 in patients with malignant salivary gland tumors treated with lapatinib 
Head & neck  2009;31(8):1006-1012.
Aim
Gene amplification status of the epidermal growth factor receptor (EGFR) and the human epidermal growth factor receptor 2 (HER2) were analyzed and correlated with clinical outcome in patients with progressive malignant salivary glands tumors (MSGT) treated with the dual EGFR/Her2 tyrosine kinase inhibitor lapatinib
Methods
Fluorescence in situ hybridization (FISH) analysis for both EGFR and HER2 gene amplification was performed successfully in the archival tumor specimens of 20 patients with adenoid cystic carcinomas (ACC) and 17 patients with non-ACC, all treated with lapatinib.
Results
For ACC, no EGFR or HER2 amplifications were detected. For non-ACC, no EGFR gene amplifications were detected but 3 patients (18%) were HER2 amplified and all had stained 3+ for both EGFR and HER2 by immunohistochemistry (IHC) in their archival specimens. Two of these patients had time-to-progression (TTP) durations of 8.3 months and 18.4 months respectively. Interestingly, patients with low and high HER2/chromosome-specific centromeric enumeration probe (CEP) 17 ratio had a prolonged TTP than those with moderate ratios for both ACC and non-ACC subtypes.
Conclusions
HER2 to CEP17 FISH ratio may predict which patients with MSGT have an increased likelihood to benefit from lapatinib. The finding of HER2:CEP17 ratio as a predictive marker of efficacy to lapatinib warrants further investigation.
doi:10.1002/hed.21052
PMCID: PMC2711990  PMID: 19309723
MSGT; lapatinib; EGFR and HER2 gene amplification; FISH

Results 1-2 (2)