Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Randomized, Double-Blind, Placebo-Controlled, Phase III Chemoprevention Trial of Selenium Supplementation in Patients With Resected Stage I Non–Small-Cell Lung Cancer: ECOG 5597 
Journal of Clinical Oncology  2013;31(33):4179-4187.
Selenium has been reported to have chemopreventive benefits in lung cancer. We conducted a double-blind, placebo-controlled trial to evaluate the incidence of second primary tumors (SPTs) in patients with resected non–small-cell lung cancer (NSCLC) receiving selenium supplementation.
Patients and Methods
Patients with completely resected stage I NSCLC were randomly assigned to take selenized yeast 200 μg versus placebo daily for 48 months. Participation was 6 to 36 months postoperatively and required a negative mediastinal node biopsy, no excessive vitamin intake, normal liver function, negative chest x-ray, and no other evidence of recurrence.
The first interim analysis in October 2009, with 46% of the projected end points accumulated, showed a trend in favor of the placebo group with a low likelihood that the trial would become positive; thus, the study was stopped. One thousand seven hundred seventy-two participants were enrolled, with 1,561 patients randomly assigned. Analysis was updated in June 2011 with the maturation of 54% of the planned end points. Two hundred fifty-two SPTs (from 224 patients) developed, of which 98 (from 97 patients) were lung cancer (38.9%). Lung and overall SPT incidence were 1.62 and 3.54 per 100 person-years, respectively, for selenium versus 1.30 and 3.39 per 100 person-years, respectively, for placebo (P = .294). Five-year disease-free survival was 74.4% for selenium recipients versus 79.6% for placebo recipients. Grade 1 to 2 toxicity occurred in 31% of selenium recipients and 26% of placebo recipients, and grade ≥ 3 toxicity occurred in less than 2% of selenium recipients versus 3% of placebo recipients. Compliance was excellent. No increase in diabetes mellitus or skin cancer was detected.
Selenium was safe but conferred no benefit over placebo in the prevention of SPT in patients with resected NSCLC.
PMCID: PMC3821010  PMID: 24002495
2.  Vitamin E and the Risk of Prostate Cancer: Updated Results of The Selenium and Vitamin E Cancer Prevention Trial (SELECT) 
JAMA  2011;306(14):1549-1556.
The initial report of the Selenium and Vitamin E Cancer Prevention Trial (SELECT) found no reduction in risk of prostate cancer with either selenium or vitamin E supplements but a non-statistically significant increase in prostate cancer risk with vitamin E. Longer follow-up and more prostate cancer events provide further insight into the relationship of vitamin E and prostate cancer.
To determine the long-term effect of vitamin E and selenium on risk of prostate cancer in relatively healthy men.
Design, Setting and Participants
SELECT randomized 35,533 men from 427 study sites in the United States, Canada and Puerto Rico in a double-blind manner between August 22, 2001 and June 24, 2004. Eligible men were 50 years or older (African Americans) or 55 years or older (all others) with a PSA ≤4.0 ng/mL and a digital rectal examination not suspicious for prostate cancer. Included in the analysis are 34,887 men randomly assigned to one of four treatment groups: selenium (n=8752), vitamin E (n=8737), both agents (n=8702), or placebo (n=8696). Data reflect the final data collected by the study sites on their participants through July 5, 2011.
Oral selenium (200 μg/day from L-selenomethionine) with matched vitamin E placebo, vitamin E (400 IU/d of all rac-α-tocopheryl acetate) with matched selenium placebo, both agents, or both matched placebos for a planned follow-up of a minimum of 7 and maximum of 12 years.
Main Outcome Measures
Prostate cancer incidence.
This report includes 54,464 additional person-years of follow-up since the primary report. Hazard ratios (99% confidence intervals [CI]) and numbers of prostate cancers were 1.17(99% CI 1.004-1.36, p=.008, n=620) for vitamin E, 1.09 (99% CI 0.93-1.27, p=.18, n=575) for selenium, 1.05 (99%CI 0.89-1.22, p=.46, n=555) for selenium + vitamin E vs. 1.00 (n=529) for placebo.The absolute increase in risk compared with placebo for vitamin E, selenium and the combination were 1.6, 0.9 and 0.4 cases of prostate cancer per 1,000 person-years.
Dietary supplementation with Vitamin E significantly increases the risk of prostate cancer among healthy men.
Trial registration identifier: NCT00006392
PMCID: PMC4169010  PMID: 21990298
3.  Selecting an Electronic Health Record System 
Journal of Oncology Practice  2007;3(3):172-173.
PMCID: PMC2793790
4.  Effect of Selenium and Vitamin E on Risk of Prostate Cancer and Other Cancers: The Selenium and Vitamin E Cancer Prevention Trial (SELECT) 
Secondary analyses of two randomized controlled trials (RCTs) and supportive epidemiologic and preclinical indicated the potential of selenium and vitamin E for preventing prostate cancer.
To determine whether selenium or vitamin E or both could prevent prostate cancer with little or no toxicity in relatively healthy men.
Design, Setting, and Participants
Randomization of a planned 32,400 men to selenium, vitamin E, selenium plus vitamin E, and placebo in a double-blinded fashion. Participants were recruited and followed in community practices, local hospitals and HMOs, and tertiary cancer centers in the United States, Canada and Puerto Rico. Baseline eligibility included 50 years or older (African American) or 55 years or older (all others), a serum prostate-specific antigen (PSA) ≤ 4 ng/mL, and a digital rectal examination (DRE) not suspicious for prostate cancer. Between 2001 and 2004, 35,533 men (10% more than planned because of a faster-than-expected accrual rate) were randomly assigned to the four study arms, which were well balanced with respect to all potentially important risk factors.
Oral selenium (200 µg/day from L-selenomethionine) and matched vitamin E placebo, vitamin E (400 IU/day of all rac-α-tocopheryl acetate) and matched selenium placebo, or the two combined or placebo plus placebo for a planned minimum of 7 and maximum of 12 years.
Main Outcome Measures
Prostate cancer (as determined by routine community diagnostic standards) and prespecified secondary outcomes including lung, colorectal and overall cancer.
Study supplements were discontinued at the recommendation of the Data and Safety Monitoring Committee at a planned 7-year interim analysis because the evidence convincingly demonstrated no benefit from either study agent (p < 0.0001) and no possibility of a benefit to the planned degree with additional follow-up. As of October 23, 2008, median overall follow-up was 5.46 years (range, 4.17 and 7.33). Hazard ratios (number of prostate cancers, 99% confidence intervals [CIs]) for prostate cancer were 1.13 for vitamin E (n=473; CI, 0.91–1.41), 1.04 for selenium (n=432; CI, 0.83–1.30), and 1.05 for the combination (n=437; CI, 0.83–1.31) compared with placebo (n=416). There were no significant differences (all p-values > 0.15) in any prespecified cancer endpoints. There were nonsignificant increased risks of prostate cancer in the vitamin E arm (p=0.06; relative risk [RR]=1.13; 99% CI, 0l95–1.35) and of Type 2 diabetes mellitus in the selenium arm (p=0.16; RR=1.07; 99% CI, 0.94–1.22), but they were not observed in the combination arm.
Selenium or vitamin E, alone or in combination, did not prevent prostate cancer in this population at the doses and formulations used.
PMCID: PMC3682779  PMID: 19066370
5.  Molecular Analysis of Non-Small Cell Lung Cancer (NSCLC) Identifies Subsets with Different Sensitivity to Insulin like Growth Factor I Receptor (IGF-IR) Inhibition 
Identify molecular determinants of sensitivity of NSCLC to anti-insulin like growth factor receptor (IGF-IR) therapy.
Experimental Design
216 tumor samples were investigated. 165 consisted of retrospective analyses of banked tissue and an additional 51 were from patients enrolled in a phase 2 study of figitumumab (F), a monoclonal antibody against the IGF-IR, in stage IIIb/IV NSCLC. Biomarkers assessed included IGF-IR, EGFR, IGF-2, IGF-2R, IRS-1, IRS-2, vimentin and E-cadherin. Sub-cellular localization of IRS-1 and phosphorylation levels of MAPK and Akt1 were also analyzed.
IGF-IR was differentially expressed across histological subtypes (P=0.04), with highest levels observed in squamous cell tumors. Elevated IGF-IR expression was also observed in a small number of squamous cell tumors responding to chemotherapy combined with F (p=0.008). Since no other biomarker/response interaction was observed using classical histological sub-typing, a molecular approach was undertaken to segment NSCLC into mechanism-based subpopulations. Principal component analysis and unsupervised Bayesian clustering identified 3 NSCLC subsets that resembled the steps of the epithelial-to-mesenchymal transition: E-cadherin high/IRS-1 low (Epithelial-like), E-cadherin intermediate/IRS-1 high (Transitional) and E-cadherin low/IRS-1 low (Mesenchymal-like). Several markers of the IGF-IR pathway were over-expressed in the Transitional subset. Furthermore, a higher response rate to the combination of chemotherapy and F was observed in Transitional tumors (71%) compared to those in the Mesenchymal-like subset (32%, p=0.03). Only one Epithelial-like tumor was identified in the phase 2 study, suggesting that advanced NSCLC has undergone significant de-differentiation at diagnosis.
NSCLC comprises molecular subsets with differential sensitivity to IGF-IR inhibition.
PMCID: PMC2952544  PMID: 20670944
IGF-IR; Figitumumab; NSCLC
6.  Safety, Pharmacokinetics, and Pharmacodynamics of the Insulin-Like Growth Factor Type 1 Receptor Inhibitor Figitumumab (CP-751,871) in Combination with Paclitaxel and Carboplatin 
This phase 1 study was conducted to determine the recommended phase 2 dose of the selective insulin-like growth factor type 1 receptor (IGF-IR) inhibitor figitumumab (F, CP-751,871) given in combination with paclitaxel and carboplatin in patients with advanced solid tumors.
Patients received paclitaxel 200 mg/m2, carboplatin (area under the curve of 6), and F (0.05–20 mg/kg) q3 weeks for up to six cycles. Patients with objective response or stable disease were eligible to receive additional cycles of single agent F until disease progression. Safety, efficacy, pharmacokinetic, and pharmacodynamic endpoints were investigated.
Forty-two patients, including 35 with stages IIIB and IV non-small cell lung cancer (NSCLC), were enrolled in eight dose escalation cohorts. A maximum tolerated dose was not identified. Severe adverse events possibly related to F included fatigue, diarrhea, hyperglycemia, gamma glutamyl transpeptidase elevation, and thrombocytopenia (one case each). F plasma exposure parameters increased with dose. Fifteen objective responses (RECIST) were reported, including two complete responses in NSCLC and ovarian carcinoma. Notably, levels of bioactive IGF-1 seemed to influence response to treatment with objective responses in patients with a high baseline-free IGF-1 to IGF binding protein-3 ratio seen only in the 10 and 20 mg/kg dosing cohorts.
F was well tolerated in combination with paclitaxel and carboplatin. Based on its favorable safety, pharmacokinetic, and pharmacodynamic properties, the maximal feasible dose of 20 mg/kg has been selected for further investigation.
PMCID: PMC2941876  PMID: 19745765
IGF-1R; Figitumumab; CP-751,871; NSCLC
7.  Evaluating Quality in Clinical Cancer Research: The M.D. Anderson Cancer Center Experience 
Oncology  2009;77(2):75-81.
Despite the unquestionable importance of clinically oriented research designed to test the safety and efficacy of new therapies in patients with malignant disease, there is limited information regarding strategies to evaluate the quality of such efforts at academic institutions.
To address this issue, a committee of senior faculty at the University of Texas M.D. Anderson Cancer Center established specific criteria by which investigators from all departments engaged in clinical research could be formally evaluated. Scoring criteria were established and revised based on the results of a pilot study. Beginning in January 2004, the committee evaluated all faculty involved in clinical research within 35 departments. Scores for individual faculty members were assigned on a scale of 1 (outstanding) to 5; a score of 3 was set as the standard for the institution. Each department also received a score. The results of the evaluation were shared with departmental chairs and the Chief Academic Officer.
392 faculty were evaluated. The median score was 3. Full professors more frequently received a score of 1, but all faculty ranks received scores of 4 and 5. As a group, tenure/tenure track faculty achieved superior scores compared to nontenure track faculty.
Based on our experience, we believe it is possible to conduct a rigorous consensus-based evaluation of the quality of clinical cancer research being conducted at an academic medical center. It is reasonable to suggest such evaluations can be used as a management tool and may lead to higher-quality clinical research.
PMCID: PMC2790774  PMID: 19571599
Cancer centers; Academic medical centers; Clinical trials

Results 1-7 (7)