PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Molecular Profiling in Unknown Primary Cancer: Accuracy of Tissue of Origin Prediction 
The Oncologist  2010;15(5):500-506.
The authors evaluated the accuracy of tissue-of-origin prediction by molecular profiling in patients with carcinoma of unknown primary site. They found the Cancer Type ID assay (bioTheranostics, Inc.) to be reliable in predicting the primary site in patients with carcinoma of unknown primary, and suggest that this could form the basis for more successful site-directed therapy when used in concert with clinicopathologic data.
Introduction.
This retrospective, multi-institutional study evaluated the accuracy of tissue-of-origin prediction by molecular profiling in patients with carcinoma of unknown primary site (CUP).
Methods.
Thirty-eight of 501 patients (7.6%) with CUP, seen in 2000–2008, had their latent primary site tumor subsequently identified during life. Twenty-eight of these patients (73.7%) had adequate initial tissue biopsies available for molecular profiling with a reverse transcriptase-polymerase chain reaction (RT-PCR) assay (Cancer Type ID; bioTheranostics, Inc., San Diego, CA). The assay was performed on formalin-fixed paraffin-embedded biopsy specimens in a blinded fashion, and the assay results were compared with clinicopathologic data and the actual latent primary sites.
Results.
Twenty of the 28 (71.4%) RT-PCR assays were successfully completed (eight biopsies had either insufficient tumor or poorly preserved RNA). Fifteen of the 20 assay predictions (75%) were correct (95% confidence interval, 60%–85%), corresponding to the actual latent primary sites identified after the initial diagnosis of CUP. Primary sites correctly identified included breast (four patients), ovary/primary peritoneal (four patients), non-small cell lung (three patients), colorectal (two patients), gastric (one patient), and melanoma (one patient). Three predictions were incorrect (intestinal, testicular, sarcoma) in patients with gastroesophageal, pancreatic, and non-small cell lung cancer, respectively, and two were unclassifiable in patients with non-small cell lung cancer. Clinicopathologic findings were helpful in suggesting the correct primary site in some patients and appear to complement the molecular assay findings.
Conclusions.
These data validate the reliability of this assay in predicting the primary site in CUP patients and may form the basis for more successful site-directed therapy, when used in concert with clinicopathologic data.
doi:10.1634/theoncologist.2009-0328
PMCID: PMC3227979  PMID: 20427384
Carcinoma of unknown primary site; Molecular profiling; Reverse transcriptase-polymerase chain reaction; Site-directed therapy
2.  A Phase I Study of Weekly Topotecan in Combination with Pemetrexed in Patients with Advanced Malignancies 
The Oncologist  2010;15(9):954-960.
The safety, tolerability, preliminary antitumor activity, and pharmacokinetic interaction of weekly topotecan plus pemetrexed in patients with advanced solid tumors were investigated. The combination was well tolerated and active.
Introduction.
This phase I study evaluated the safety, tolerability, preliminary antitumor activity, and pharmacokinetic interaction of weekly topotecan (days 1 and 8) in combination with pemetrexed (day 1 only) in patients with advanced solid tumors.
Methods.
Patients received topotecan (3.0–4.0 mg/m2 i.v. days 1 and 8) and pemetrexed (375–500 mg/m2 i.v. day 1) over 21-day cycles. Patients were accrued across five different dose levels and were observed for safety, tolerability, and preliminary activity.
Results.
Twenty-six patients received 120 cycles of pemetrexed and topotecan, including five patients who received 8, 8, 10, 12, and 17 cycles without dose reductions, confirming a lack of cumulative myelosuppression. Four patients received topotecan (4.0 mg/m2 i.v.) and pemetrexed (500 mg/m2 i.v.), but experienced two dose-limiting toxicities (febrile neutropenia, grade 4 thrombocytopenia). As a result, the topotecan (3.5 mg/m2 i.v.) and pemetrexed (500 mg/m2 i.v.) group was expanded to 12 patients. The only grade 3 or 4 nonhematologic toxicity was one episode of grade 3 fatigue; no grade 3 or 4 nausea/vomiting/diarrhea, mucositis, or rash was reported. One non-small cell lung cancer (NSCLC) patient (12 months) and one soft tissue sarcoma patient (6 months) achieved a partial response.
Conclusions.
Weekly topotecan plus every-3-week pemetrexed was well tolerated and active. Full doses of topotecan plus pemetrexed caused brief reversible myelosuppression with minimal dose delays/reductions; no grade 3 or 4 nausea/vomiting/diarrhea, mucositis, or rash was reported. All six NSCLC patients at the recommended phase II dose had at least stable disease as a best response, including one partial response lasting 12 months. There was no evidence of an effect of pemetrexed on topotecan pharmacokinetics. Collectively, these data suggest that further phase II exploration of weekly topotecan plus every-3-week pemetrexed for advanced malignancies is indicated.
doi:10.1634/theoncologist.2010-0006
PMCID: PMC3228036  PMID: 20798192
Topotecan; Pemetrexed; Hematologic toxicity; Pharmacokinetics; Advanced solid tumors
3.  High-Dose Etoposide: From Phase I to a Component of Curative Therapy 
Journal of Clinical Oncology  2008;26(33):5310-5312.
doi:10.1200/JCO.2008.19.0892
PMCID: PMC2661465  PMID: 18838698
4.  A Phase I Dose-Escalation Study of Danusertib (PHA-739358) Administered as a 24-hour Infusion With and Without G-CSF in a 14-day Cycle in Patients with Advanced Solid Tumors 
Purpose
This study was conducted to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of the intravenous pan-aurora kinase inhibitor PHA-739358, danusertib, in patients with advanced solid tumors.
Experimental Design
In Part 1, patients received escalating doses of danusertib (24-h infusion every 14 days) without filgrastim (G-CSF). Febrile neutropenia was the dose-limiting toxicity without G-CSF. Further dose escalation was performed in part 2 with G-CSF. Blood samples were collected for danusertib pharmacokinetics and pharmacodynamics. Skin biopsies were collected to assess histone H3 phosphorylation (pH3).
Results
Fifty-six patients were treated, 40 in part 1 and 16 in part 2. Febrile neutropenia was the dose limiting toxicity in Part 1 without G-CSF. Most other adverse events were grade 1–2, occurring at doses ≥360 mg/m2 with similar incidence in parts 1 and 2. The MTD without G-CSF is 500 mg/m2. The recommended phase 2 dose (RP2D) in Part 2 with G-CSF is 750 mg/m2. Danusertib demonstrated dose-proportional pharmacokinetics in parts 1 and 2 with a median half-life of 18–26 hours. pH3 modulation in skin biopsies was observed at ≥500 mg/m2. One patient with refractory small cell lung cancer (1000 mg/m2 with G-CSF) had an objective response lasting 23 weeks. One patient with refractory ovarian cancer had 27% tumor regression and 30% CA125 decline.
Conclusions
Danusertib was well tolerated with target inhibition in skin at ≥500 mg/m2. Preliminary evidence of anti-tumor activity, including a PR and several occurrences of prolonged stable disease (SD), was seen across a variety of advanced refractory cancers. Phase II studies are ongoing.
doi:10.1158/1078-0432.CCR-09-1445
PMCID: PMC2826106  PMID: 19825950
Danusertib; PHA-739358; Aurora Kinase Inhibitor; phase I trial; solid tumors
5.  Paraneoplastic Syndromes 
Western Journal of Medicine  1986;144(5):604-606.
PMCID: PMC1306721  PMID: 18749985

Results 1-5 (5)