Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Naptumomab Estafenatox: Targeted Immunotherapy with a Novel Immunotoxin 
Current Oncology Reports  2014;16(2):370.
Improvement of cancer therapy by introducing new concepts is still urgent even though there have been major advancements lately. Immunotherapy is well on the way to becoming an established tool in the cancer treatment armory. It seems that a combination of (1) activation of immune effector cells and selective targeting of them to tumors and (2) the inhibition of immune suppression often induced by the tumor itself are necessary to achieve the therapeutic goal. The immunotoxin naptumomab estafenatox was developed in an effort to activate and target the patient’s own T cells to their tumor, by fusing a superantigen (SAg) variant that activates T lymphocytes to the Fab moiety of a tumor-reactive monoclonal antibody. Naptumomab estafenatox targets the 5T4 tumor antigen, a 72-kDa oncofetal trophoblast protein expressed on many carcinomas, including renal cell carcinoma. The therapeutic effect is associated with activation of SAg-binding T cells. The SAg-binding T lymphocytes expand, differentiate to effector cells, and infiltrate the tumor. The therapeutic efficacy is most likely related to the dual mechanism of tumor cell killing: (1) direct lysis by cytotoxic T lymphocytes of tumor cells expressing the antigen recognized by the antibody moiety of the fusion protein and (2) secretion of cytokines eliminating antigen-negative tumor cell variants. Naptumomab estafenatox has been clinically tested in a range of solid tumors with focus on renal cell carcinoma. This review looks at the clinical experience with the new immunotoxin and its potential.
PMCID: PMC3918406  PMID: 24445502
Immunotherapy; Immunotoxin; Tumor-targeted superantigen; 5T4 tumor antigen; Carcinoma; Kidney cancer; Renal cell carcinoma; Evolving therapies; Naptumomab estafenatox
2.  The Tumor Targeted Superantigen ABR-217620 Selectively Engages TRBV7-9 and Exploits TCR-pMHC Affinity Mimicry in Mediating T Cell Cytotoxicity 
PLoS ONE  2013;8(10):e79082.
The T lymphocytes are the most important effector cells in immunotherapy of cancer. The conceptual objective for developing the tumor targeted superantigen (TTS) ABR-217620 (naptumomab estafenatox, 5T4Fab-SEA/E-120), now in phase 3 studies for advanced renal cell cancer, was to selectively coat tumor cells with cytotoxic T lymphocytes (CTL) target structures functionally similar to natural CTL pMHC target molecules. Here we present data showing that the molecular basis for the anti-tumor activity by ABR-217620 resides in the distinct interaction between the T cell receptor β variable (TRBV) 7-9 and the engineered superantigen (Sag) SEA/E-120 in the fusion protein bound to the 5T4 antigen on tumor cells. Multimeric but not monomeric ABR-217620 selectively stains TRBV7-9 expressing T lymphocytes from human peripheral blood similar to antigen specific staining of T cells with pMHC tetramers. SEA/E-120 selectively activates TRBV7-9 expressing T lymphocytes resulting in expansion of the subset. ABR-217620 selectively triggers TRBV7-9 expressing cytotoxic T lymphocytes to kill 5T4 positive tumor cells. Furthermore, ABR-217620 activates TRBV7-9 expressing T cell line cells in the presence of cell- and bead-bound 5T4 tumor antigen. Surface plasmon resonance analysis revealed that ABR-217620 binds to 5T4 with high affinity, to TRBV7-9 with low affinity and to MHC class II with very low affinity. The T lymphocyte engagement by ABR-217620 is constituted by displaying high affinity binding to the tumor cells (KD approximately 1 nM) and with the mimicry of natural productive immune TCR-pMHC contact using affinities of around 1 µM. This difference in kinetics between the two components of the ABR-217620 fusion protein will bias the binding towards the 5T4 target antigen, efficiently activating T-cells via SEA/E-120 only when presented by the tumor cells.
PMCID: PMC3806850  PMID: 24194959
3.  Phase I Dose Escalation, Pharmacokinetic and Pharmacodynamic Study of Naptumomab Estafenatox Alone in Patients With Advanced Cancer and With Docetaxel in Patients With Advanced Non–Small-Cell Lung Cancer 
Journal of Clinical Oncology  2009;27(25):4116-4123.
Two phase I studies were conducted of ABR-217620 alone or in combination with docetaxel. This is a recombinant fusion protein consisting of a mutated variant of the superantigen staphylococcal enterotoxin E (SEA/E-120) linked to fragment antigen binding moiety of a monoclonal antibody recognizing the tumor-associated antigen 5T4.
Patients and Methods
Patients with non–small-cell lung cancer (NSCLC), pancreatic cancer (PC), and renal cell cancer (RCC) received 5 daily boluses of ABR-217620 (3-month cycles) in escalating doses to determine the maximum-tolerated dose (MTD; ABR-217620 dose escalation monotherapy [MONO] study). Doses were selected based on individual patient anti–SEA/E-120 titers pretreatment. Patients with NSCLC received 4 daily, escalating doses of ABR-217620 followed by docetaxel in 21-day cycles (ABR-217620 dose escalation combination with docetaxel [COMBO] study).
Thirty-nine patients were enrolled in the MONO study and 13 were enrolled in the COMBO study. The monotherapy MTD was 26 μg/kg (NSCLC and PC) and 15 μg/kg (RCC). Dose-limiting toxicities (DLTs) in the MONO study were fever, hypotension, acute liver toxicity, and vascular leak syndrome. In the COMBO study, the MTD was 22 μg/kg (neutropenic sepsis). Adverse events included grade 1 to 2 fever, hypotension, nausea, and chills. Treatment caused a systemic increase of inflammatory cytokines and selective expansion of SEA/E-120 reactive T-cells. Tumor biopsies demonstrated T-cell infiltration after therapy. Fourteen patients (36%) had stable disease (SD) on day 56 of the MONO study. Two patients (15%) in the COMBO study had partial responses, one in a patient with progressive disease on prior docetaxel, and five patients (38%) had SD on day 56.
ABR-217620 was well tolerated with evidence of immunological activity and antitumor activity.
PMCID: PMC2734423  PMID: 19636016

Results 1-3 (3)