Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Changes in p-ERK1/2 and p-AKT Expression in Melanoma Lesions after Imatinib Treatment 
Melanoma research  2008;18(4):10.1097/CMR.0b013e3283046146.
Response to treatment with imatinib mesylate has been associated in preclinical models with the inhibition of two signaling pathways that promote cellular survival—the phosphatidylinositol 3-kinase (PI3K)/AKT pathway and the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway. We sought to evaluate the extent of inhibition of these two pathways in metastatic melanoma specimens from patients treated with imatinib. Metastatic melanoma tumor samples were obtained before and during the second week of imatinib treatment from patients enrolled in a phase II study. A tissue microarray was constructed using formalin-fixed, paraffin-embedded tissues, and immunohistochemical analysis was performed using standard techniques to detect phosphorylated (p) ERK1/2 and pAKT expression. Of 21 patients who were treated with imatinib, tumor samples adequate for analysis were available both at baseline and during the second week of treatment from 10 patients for pERK1/2 expression and from nine patients for pAKT expression. There was no consistent pattern of change in pAKT or pERK expression after treatment with imatinib. There was no apparent correlation between the clinical benefit of imatinib treatment and changes in pAKT and pERK1/2 expression. A better understanding of the AKT and MAPK pathways is needed to optimize the clinical benefit of targeted therapy, such as imatinib.
PMCID: PMC3880193  PMID: 18626307
imatinib; melanoma; pEKR1/2; pAKT; signal transduction pathway
2.  Phase 1 study of MLN8054, a selective inhibitor of Aurora A kinase in patients with advanced solid tumors 
Aurora A kinase is critical in assembly and function of the mitotic spindle. It is overexpressed in various tumor types and implicated in oncogenesis and tumor progression. This trial evaluated the dose-limiting toxicities (DLTs) and maximum tolerated dose (MTD) of MLN8054, a selective small-molecule inhibitor of Aurora A kinase.
In this first-in-human, dose-escalation study, MLN8054 was given orally for 7, 14, or 21 days followed by a 14-day treatment-free period. Escalating cohorts of 3–6 patients with advanced solid tumors were treated until DLT was seen in ≥2 patients in a cohort. Serial blood samples were collected for pharmacokinetics and skin biopsies were collected for pharmacodynamics.
Sixty-one patients received 5, 10, 20, 30 or 40 mg once daily for 7 days; 25, 35, 45 or 55 mg/day in four divided doses (QID) for 7 days; or 55, 60, 70 or 80 mg/day plus methylphenidate or modafinil with daytime doses (QID/M) for 7–21 days. DLTs of reversible grade 3 benzodiazepine-like effects defined the estimated MTD of 60 mg QID/M for 14 days. MLN8054 was absorbed rapidly, exposure was dose-proportional, and terminal half-life was 30-40 hours. Three patients had stable disease for >6 cycles.
MLN8054 dosing for up to 14 days of a 28-day cycle was feasible. Reversible somnolence was dose limiting and prevented achievement of plasma concentrations predicted necessary for target modulation. A recommended dose for investigation in phase 2 trials was not established. A second-generation Aurora A kinase inhibitor is in development.
PMCID: PMC3026871  PMID: 20607239
MLN8054; Aurora A kinase; dose-limiting toxicity; pharmacokinetics; pharmacodynamics
3.  Autologous tumor-derived heat-shock protein peptide complex-96 (HSPPC-96) in patients with metastatic melanoma 
Glycoprotein-96, a non-polymorphic heat-shock protein, associates with intracellular peptides. Autologous tumor-derived heat shock protein-peptide complex 96 (HSPPC-96) can elicit potent tumor-specific T cell responses and protective immunity in animal models. We sought to investigate the feasibility, safety, and antitumor activity of HSPPC-96 vaccines prepared from tumor specimens of patients with metastatic melanoma.
Patients with a Karnofsky Performance Status >70% and stage III or stage IV melanoma had to have a metastasis >3 cm in diameter resectable as part of routine clinical management. HSPPC-96 tumor-derived vaccines were prepared in one of three dose levels (2.5, 25, or 100 μg/dose) and administered as an intradermal injection weekly for 4 consecutive weeks. In vivo induction of immunity was evaluated using delayed-type hypersensitivity (DTH) to HSPPC-96, irradiated tumor, and dinitrochlorobenzene (DNCB). The γ-interferon (IFNγ) ELISPOT assay was used to measure induction of a peripheral blood mononuclear cell response against autologous tumor cells at baseline and at the beginning of weeks 3, 4, and 8.
Among 36 patients enrolled, 72% had stage IV melanoma and 83% had received prior systemic therapy. The smallest tumor specimen from which HSPPC-96 was prepared weighed 2 g. Twelve patients (including 9 with stage IV and indicator lesions) had a negative DNCB skin test result at baseline. All 36 patients were treated and evaluable for toxicity and response. There were no serious toxicities. There were no observed DTH responses to HSPPC-96 or to autologous tumor cells before or during treatment. The IFNγ-producing cell count rose modestly in 5 of 26 patients and returned to baseline by week 8, with no discernible association with HSPPC-96 dosing or clinical parameters. There were no objective responses among 16 patients with stage IV disease and indicator lesions. Among 20 patients treated in the adjuvant setting, 11 with stage IV melanoma at baseline had a progression-free and overall survival of 45% and 82%, respectively, with a median follow-up of 10 years.
Treatment with autologous tumor-derived HSPPC-96 was feasible and safe at all doses tested. Observed immunological effects and antitumor activity were modest, precluding selection of a biologically active dose. Nevertheless, the 25-μg dose level was shown to be practical for further study.
PMCID: PMC2835652  PMID: 20109236

Results 1-3 (3)