PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Current Status of Src Inhibitors in Solid Tumor Malignancies 
The Oncologist  2011;16(5):566-578.
Src structure and function, mechanisms involving Src that lead to the development of cancer, and key preclinical data establishing a rationale for clinical application are reviewed. Clinical trials investigating new biomarkers as well as ongoing studies assessing Src inhibitor activity in biomarker-selected patient populations are highlighted.
Summary.
Src is believed to play an important role in cancer, and several agents targeting Src are in clinical development.
Design.
We reviewed Src structure and function and preclinical data supporting its role in the development of cancer via a PubMed search. We conducted an extensive review of Src inhibitors by searching abstracts from major oncology meeting databases in the last 3 years and by comprehensively reviewing ongoing clinical trials on ClinicalTrials.gov.
Results.
In this manuscript, we briefly review Src structure and function, mechanisms involving Src that lead to the development of cancer, and Src inhibitors and key preclinical data establishing a rationale for clinical application. We then focus on clinical data supporting their use in solid tumor malignancies, a newer arena than their more well-established hematologic applications. Particularly highlighted are clinical trials investigating new biomarkers as well as ongoing studies assessing Src inhibitor activity in biomarker-selected patient populations. We also review newer investigational Src-targeting agents.
Conclusions.
Src inhibitors have shown little activity in monotherapy trials in unselected solid tumor patient populations. Combination studies and biomarker-driven clinical trials are under way.
doi:10.1634/theoncologist.2010-0408
PMCID: PMC3228195  PMID: 21521831
Biologic; Bosutinib; Dasatinib; Saracatinib; Solid tumor; Src inhibitors
2.  Phase I Pharmacologic and Biologic Study of Ramucirumab (IMC-1121B), a Fully Human Immunoglobulin G1 Monoclonal Antibody Targeting the Vascular Endothelial Growth Factor Receptor-2 
Journal of Clinical Oncology  2010;28(5):780-787.
Purpose
To evaluate the safety, maximum-tolerated dose (MTD), pharmacokinetics (PKs), pharmacodynamics, and preliminary anticancer activity of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor (VEGFR)-2.
Patients and Methods
Patients with advanced solid malignancies were treated once weekly with escalating doses of ramucirumab. Blood was sampled for PK studies throughout treatment. The effects of ramucirumab on circulating vascular endothelial growth factor-A (VEGF-A), soluble VEGFR-1 and VEGFR-2, tumor perfusion, and vascularity using dynamic contrast-enhanced magnetic resonance imaging were assessed.
Results
Thirty-seven patients were treated with 2 to 16 mg/kg of ramucirumab. After one patient each developed dose-limiting hypertension and deep venous thrombosis at 16 mg/kg, the next lower dose (13 mg/kg) was considered the MTD. Nausea, vomiting, headache, fatigue, and proteinuria were also noted. Four (15%) of 27 patients with measurable disease had a partial response (PR), and 11 (30%) of 37 patients had either a PR or stable disease lasting at least 6 months. PKs were characterized by dose-dependent elimination and nonlinear exposure consistent with saturable clearance. Mean trough concentrations exceeded biologically relevant target levels throughout treatment at all dose levels. Serum VEGF-A increased 1.5 to 3.5 times above pretreatment values and remained in this range throughout treatment at all dose levels. Tumor perfusion and vascularity decreased in 69% of evaluable patients.
Conclusion
Objective antitumor activity and antiangiogenic effects were observed over a wide range of dose levels, suggesting that ramucirumab may have a favorable therapeutic index in treating malignancies amenable to VEGFR-2 inhibition.
doi:10.1200/JCO.2009.23.7537
PMCID: PMC2834394  PMID: 20048182

Results 1-2 (2)