Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Lack of pharmacokinetic drug–drug interaction between ramucirumab and paclitaxel in a phase II study of patients with advanced malignant solid tumors 
The objective of this phase II study was to evaluate pharmacokinetic interaction potential between ramucirumab and paclitaxel in patients with advanced cancer.
This study was designed to assess 2-way pharmacokinetic drug–drug interactions between ramucirumab and paclitaxel. Twenty-four patients participated in Part A, which consisted of a 2-week monotherapy period in which paclitaxel 80 mg/m2 was administered on day 1, followed by a 4-week cycle of combination treatment with ramucirumab (8 mg/kg on days 1 and 15; paclitaxel on days 1, 8, and 15). Patients could continue to receive combination therapy with ramucirumab and paclitaxel. In 16 patients in Part B, ramucirumab monotherapy was administered on day 1 of a 3-week cycle. Patients could continue to receive ramucirumab monotherapy or combination therapy with paclitaxel.
Concomitant administration of ramucirumab had no effect on pharmacokinetics of paclitaxel, with ratios of geometric least squares (LS) means (with ramucirumab vs. alone) of 1.09 (90 % confidence interval [CI] 0.93, 1.29) for AUC(0–∞) and 0.97 (90 % CI 0.83, 1.13) for Cmax. In addition, similar ramucirumab pharmacokinetic characteristics were observed with or without paclitaxel administration. The ratios of geometric LS means of AUC(0–∞) and Cmax of ramucirumab (with paclitaxel vs. alone) were 1.00 (90 % CI 0.84, 1.19) for AUC(0–∞) and 1.07 (90 % CI 0.93, 1.24) for Cmax, respectively.
Concomitant paclitaxel administration is unlikely to affect the pharmacokinetics of ramucirumab, and vice versa. The incidence and severity of adverse events were consistent with the known safety profiles of paclitaxel and ramucirumab.
PMCID: PMC4965482  PMID: 27379498
Ramucirumab; Paclitaxel; Pharmacokinetics; Drug–drug interactions; Cancer
2.  The Evolving Role of Immune Checkpoint Inhibitors in Cancer Treatment 
The Oncologist  2015;20(7):812-822.
Immunotherapy is an evolving treatment approach based on the role of the immune system in eradicating cancer. This review discusses the concepts and data behind immunotherapies, with a focus on the checkpoint inhibitors and their responses, toxicities, and potential for long-term survival, and explores promising single-agent and combination therapies in development.
Traditional treatment modalities for advanced cancer (radiotherapy, chemotherapy, or targeted agents) act directly on tumors to inhibit or destroy them. Along with surgery, these modalities are predominantly palliative, with toxicity and only modest improvements in survival in patients with advanced solid tumors. Accordingly, long-term survival rates for most patients with advanced cancer remain low, thus there is a need for cancer treatments with favorable benefit and toxicity profiles that can potentially result in long-term survival. The immune system plays a critical role in the recognition and eradication of tumor cells (“immune surveillance”), and immunotherapies based on this concept have been used for decades with some success against a few tumor types; however, most immunotherapies were limited by a lack of either substantial efficacy or specificity, resulting in toxicity. We now have a greater understanding of the complex interactions between the immune system and tumors and have identified key molecules that govern these interactions. This information has revitalized the interest in immunotherapy as an evolving treatment modality using immunotherapeutics designed to overcome the mechanisms exploited by tumors to evade immune destruction. Immunotherapies have potentially complementary mechanisms of action that may allow them to be combined with other immunotherapeutics, chemotherapy, targeted therapy, or other traditional therapies. This review discusses the concepts and data behind immunotherapies, with a focus on the checkpoint inhibitors and their responses, toxicities, and potential for long-term survival, and explores promising single-agent and combination therapies in development.
Implications for Practice:
Immunotherapy is an evolving treatment approach based on the role of the immune system in eradicating cancer. An example of an immunotherapeutic is ipilimumab, an antibody that blocks cytotoxic T-lymphocyte antigen-4 (CTLA-4) to augment antitumor immune responses. Ipilimumab is approved for advanced melanoma and induced long-term survival in a proportion of patients. The programmed death-1 (PD-1) checkpoint inhibitors are promising immunotherapies with demonstrated sustained antitumor responses in several tumors. Because they harness the patient’s own immune system, immunotherapies have the potential to be a powerful weapon against cancer.
PMCID: PMC4492230  PMID: 26069281
Immunotherapy; Checkpoint inhibitors; CTLA-4; PD-1; Combination; Survival
3.  Ceritinib in ALK-Rearranged Non–Small-Cell Lung Cancer 
The New England journal of medicine  2014;370(13):1189-1197.
Non–small-cell lung cancer (NSCLC) harboring the anaplastic lymphoma kinase gene (ALK) rearrangement is sensitive to the ALK inhibitor crizotinib, but resistance invariably develops. Ceritinib (LDK378) is a new ALK inhibitor that has shown greater antitumor potency than crizotinib in preclinical studies.
In this phase 1 study, we administered oral ceritinib in doses of 50 to 750 mg once daily to patients with advanced cancers harboring genetic alterations in ALK. In an expansion phase of the study, patients received the maximum tolerated dose. Patients were assessed to determine the safety, pharmacokinetic properties, and antitumor activity of ceritinib. Tumor biopsies were performed before ceritinib treatment to identify resistance mutations in ALK in a group of patients with NSCLC who had had disease progression during treatment with crizotinib.
A total of 59 patients were enrolled in the dose-escalation phase. The maximum tolerated dose of ceritinib was 750 mg once daily; dose-limiting toxic events included diarrhea, vomiting, dehydration, elevated aminotransferase levels, and hypophosphatemia. This phase was followed by an expansion phase, in which an additional 71 patients were treated, for a total of 130 patients overall. Among 114 patients with NSCLC who received at least 400 mg of ceritinib per day, the overall response rate was 58% (95% confidence interval [CI], 48 to 67). Among 80 patients who had received crizotinib previously, the response rate was 56% (95% CI, 45 to 67). Responses were observed in patients with various resistance mutations in ALK and in patients without detectable mutations. Among patients with NSCLC who received at least 400 mg of ceritinib per day, the median progression-free survival was 7.0 months (95% CI, 5.6 to 9.5).
Ceritinib was highly active in patients with advanced, ALK-rearranged NSCLC, including those who had had disease progression during crizotinib treatment, regardless of the presence of resistance mutations in ALK. (Funded by Novartis Pharmaceuticals and others; number, NCT01283516.)
PMCID: PMC4079055  PMID: 24670165
Neuro-Oncology  2014;16(Suppl 5):v39.
BACKGROUND: Ceritinib is an ALK inhibitor (ALKi) recently approved for patients with ALK+ advanced NSCLC. Efficacy and safety were evaluated in a subset of patients with BM in the phase I ASCEND-1 study. In 246 patients with ALK+ NSCLC who received ceritinib 750 mg/day, overall response rate (ORR) was 58.5% (95% CI: 52.1, 64.8) and was 66.3% (55.1, 76.3) and 54.6% (46.6, 62.4) in ALKi-naïve and ALKi-treated patients, respectively. METHODS: Patients with ALK+ advanced NSCLC and clinically/neurologically stable BM at baseline who received ceritinib 750 mg/day were analyzed for response based on investigator assessment. RESULTS: Among 246 patients, 124 had BM at baseline, including 98 with prior ALKi treatment and 26 who were ALKi-naïve. The BM subset had a median age of 51.0 years; 85.5% with an ECOG PS ≤1; 58.1% Caucasian, 39.5% Asian; median time from NSCLC diagnosis to first ceritinib dose was 20.5 months. Median duration of exposure was 27 weeks. ORR was 54.0% (44.9, 63.0) in the full cohort [50.0% (39.7, 60.3) in ALKi-treated and 69.2% (48.2, 85.7) in ALKi-naïve]. Median DOR was 7.0 mo (5.5, 9.7) for the full subset [6.9 mo (4.8, 8.5) in ALKi-treated and not estimable (NE) in ALKi-naïve]. Median PFS was 6.9 mo (5.4, 8.4) [6.7 mo (4.9, 8.4) and 8.3 mo (4.6, NE) in ALKi-treated and ALKi-naïve]. Measurable target lesions were identified at baseline in 14 patients (10 ALKi-treated, 4 ALKi-naïve). Seven of these patients achieved a response in the brain (4 ALKi-treated, 3 ALKi-naïve) and 3 had stable disease (all ALKi-treated). The most common adverse events (all grades) in all patients and the BM subset were diarrhea (86% vs 79%), nausea (80% vs 82%), and vomiting (60% vs 63%). CONCLUSIONS: Ceritinib has clinically significant durable efficacy in patients with ALK+ NSCLC, including patients with BM, regardless of prior ALKi treatment.
PMCID: PMC4217934
5.  Safety and Activity of Anti–PD-L1 Antibody in Patients with Advanced Cancer 
The New England journal of medicine  2012;366(26):2455-2465.
Programmed death 1 (PD-1) protein, a T-cell coinhibitory receptor, and one of its ligands, PD-L1, play a pivotal role in the ability of tumor cells to evade the host’s immune system. Blockade of interactions between PD-1 and PD-L1 enhances immune function in vitro and mediates antitumor activity in preclinical models.
In this multicenter phase 1 trial, we administered intravenous anti–PD-L1 antibody (at escalating doses ranging from 0.3 to 10 mg per kilogram of body weight) to patients with selected advanced cancers. Anti–PD-L1 antibody was administered every 14 days in 6-week cycles for up to 16 cycles or until the patient had a complete response or confirmed disease progression.
As of February 24, 2012, a total of 207 patients — 75 with non–small-cell lung cancer, 55 with melanoma, 18 with colorectal cancer, 17 with renal-cell cancer, 17 with ovarian cancer, 14 with pancreatic cancer, 7 with gastric cancer, and 4 with breast cancer — had received anti–PD-L1 antibody. The median duration of therapy was 12 weeks (range, 2 to 111). Grade 3 or 4 toxic effects that investigators considered to be related to treatment occurred in 9% of patients. Among patients with a response that could be evaluated, an objective response (a complete or partial response) was observed in 9 of 52 patients with melanoma, 2 of 17 with renal-cell cancer, 5 of 49 with non–small-cell lung cancer, and 1 of 17 with ovarian cancer. Responses lasted for 1 year or more in 8 of 16 patients with at least 1 year of follow-up.
Antibody-mediated blockade of PD-L1 induced durable tumor regression (objective response rate of 6 to 17%) and prolonged stabilization of disease (rates of 12 to 41% at 24 weeks) in patients with advanced cancers, including non–small-cell lung cancer, melanoma, and renal-cell cancer. (Funded by Bristol-Myers Squibb and others; number, NCT00729664.)
PMCID: PMC3563263  PMID: 22658128
6.  Phase I Pharmacologic and Biologic Study of Ramucirumab (IMC-1121B), a Fully Human Immunoglobulin G1 Monoclonal Antibody Targeting the Vascular Endothelial Growth Factor Receptor-2 
Journal of Clinical Oncology  2010;28(5):780-787.
To evaluate the safety, maximum-tolerated dose (MTD), pharmacokinetics (PKs), pharmacodynamics, and preliminary anticancer activity of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor (VEGFR)-2.
Patients and Methods
Patients with advanced solid malignancies were treated once weekly with escalating doses of ramucirumab. Blood was sampled for PK studies throughout treatment. The effects of ramucirumab on circulating vascular endothelial growth factor-A (VEGF-A), soluble VEGFR-1 and VEGFR-2, tumor perfusion, and vascularity using dynamic contrast-enhanced magnetic resonance imaging were assessed.
Thirty-seven patients were treated with 2 to 16 mg/kg of ramucirumab. After one patient each developed dose-limiting hypertension and deep venous thrombosis at 16 mg/kg, the next lower dose (13 mg/kg) was considered the MTD. Nausea, vomiting, headache, fatigue, and proteinuria were also noted. Four (15%) of 27 patients with measurable disease had a partial response (PR), and 11 (30%) of 37 patients had either a PR or stable disease lasting at least 6 months. PKs were characterized by dose-dependent elimination and nonlinear exposure consistent with saturable clearance. Mean trough concentrations exceeded biologically relevant target levels throughout treatment at all dose levels. Serum VEGF-A increased 1.5 to 3.5 times above pretreatment values and remained in this range throughout treatment at all dose levels. Tumor perfusion and vascularity decreased in 69% of evaluable patients.
Objective antitumor activity and antiangiogenic effects were observed over a wide range of dose levels, suggesting that ramucirumab may have a favorable therapeutic index in treating malignancies amenable to VEGFR-2 inhibition.
PMCID: PMC2834394  PMID: 20048182
7.  A phase I safety, pharmacological, and biological study of the farnesyl protein transferase inhibitor, lonafarnib (SCH 663366), in combination with cisplatin and gemcitabine in patients with advanced solid tumors 
This phase I study was conducted to evaluate the safety, tolerability, pharmacological properties and biological activity of the combination of the lonafarnib, a farnesylproteintransferase (FTPase) inhibitor, with gemcitabine and cisplatin in patients with advanced solid malignancies.
Experimental design
This was a single institution study to determine the maximal tolerated dose (MTD) of escalating lonafarnib (75–125 mg po BID) with gemcitabine (750–1,000 mg/m2 on days 1, 8, 15) and fixed cisplatin (75 mg/m2 day 1) every 28 days. Due to dose-limiting toxicities (DLTs) of neutropenia and thrombocytopenia in initial patients, these patients were considered “heavily pretreated” and the protocol was amended to limit prior therapy and re-escalate lonafarnib in “less heavily pre-treated patients” on 28-day and 21-day schedules. Cycle 1 and 2 pharmacokinetics (PK), and farnesylation of the HDJ2 chaperone protein and FPTase activity were analyzed.
Twenty-two patients received 53 courses of therapy. Nausea, vomiting, and fatigue were frequent in all patients. Severe toxicities were observed in 91% of patients: neutropenia (41%), nausea (36%), thrombocytopenia (32%), anemia (23%) and vomiting (23%). Nine patients withdrew from the study due to toxicity. DLTs of neutropenia, febrile neutropenia, thrombocytopenia, and fatigue limited dose-escalation on the 28-day schedule. The MTD was established as lonafarnib 75 mg BID, gemcitabine 750 mg/m2 days 1, 8, 15, and cisplatin 75 mg/m2 in heavily pre-treated patients. The MTD in the less heavily pre-treated patients could not be established on the 28-day schedule as DLTs were observed at the lowest dose level, and dose escalation was not completed on the 21-day schedule due to early study termination by the Sponsor. No PK interactions were observed. FTPase inhibition was not observed at the MTD, however HDJ-2 gel shift was observed in one patient at the 100 mg BID lonafarnib dose. Anti-cancer activity was observed: four patients had stable disease lasting >2 cycles, one subject had a complete response, and another had a partial response, both with metastatic breast cancer.
Lonafarnib 75 mg BID, gemcitabine 750 mg/m2 days 1, 8, 15, and cisplatin 75 mg/m2 day 1 on a 28-day schedule was established as the MTD. Lonafarnib did not demonstrate FTPase inhibition at these doses. Despite the observed efficacy, substantial toxicity and questionable contribution of anti-tumor activity of lonafarnib to gemcitabine and cisplatin limits further exploration of this combination.
PMCID: PMC2813768  PMID: 18058098
Lonafarnib; SCH66336; Cisplatin; Gemcitabine; Farnesyltransferase; Phase I; Pharmacokinetics
8.  A phase I pharmacological and biological study of PI-88 and docetaxel in patients with advanced malignancies 
This study evaluated the safety, toxicity, pharmacological properties and biological activity of PI-88, a heparanase endoglycosidase enzyme inhibitor, with fixed weekly docetaxel in patients with advanced solid malignancies.
Experimental design
This was a phase I study to determine the maximal-tolerated dose of escalating doses of PI-88 administered subcutaneously for 4 days per week, along with docetaxel 30 mg/m2 given on days 1, 8, 15 of a 28-day schedule.
Sixteen patients received a total of 42 courses of therapy. No dose-limiting toxicities were observed despite escalation to the highest planned dose level of PI-88 (250 mg/day). Frequent minor toxicities included fatigue (38%), dysgeusia (28.5%), thrombocytopenia (12%), diarrhea (14%), nausea (12%), and emesis (10%) in the 42 courses. No significant bleeding complications were observed. One patient developed a positive anti-heparin antibody test/serotonin releasing assay with positive anti-platelet factor 4/PI-88 antibodies and grade 1 thrombocytopenia in cycle 5, and was withdrawn from the study without any sequelae. PI-88 plasma concentrations (mirrored by APTT) and urinary elimination were linear and dose-proportional. Docetaxel did not alter the pharmacokinetic (PK) profile of PI-88, nor did PI-88 affect docetaxel PK. No significant relationship was determined between plasma or urine FGF-2, or plasma VEGF levels and PI-88 dose/response. Although no objective responses were observed; 9 of the 15 evaluable patients had stable disease for greater than two cycles of therapy.
PI-88 administered at 250 mg/day for 4 days each week for 3 weeks with docetaxel 30 mg/m2 on days 1, 8 and 15, every 28 days, was determined to be the recommended dose level for phase II evaluation. This combination was well tolerated without severe toxicities or PK interactions.
PMCID: PMC2813677  PMID: 18320191
PI-88; Docetaxel; Heparanase inhibitor; Angiogenesis; Clinical trial; Advanced malignancies

Results 1-8 (8)