PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Small Cell Lung Cancer 
Neuroendocrine tumors account for approximately 20% of lung cancers; most (≈15%) are small cell lung cancer (SCLC). These NCCN Clinical Practice Guidelines in Oncology for SCLC focus on extensive-stage SCLC because it occurs more frequently than limited-stage disease. SCLC is highly sensitive to initial therapy; however, most patients eventually die of recurrent disease. In patients with extensive-stage disease, chemotherapy alone can palliate symptoms and prolong survival in most patients; however, long-term survival is rare. Most cases of SCLC are attributable to cigarette smoking; therefore, smoking cessation should be strongly promoted.
PMCID: PMC3715060  PMID: 23307984
2.  Personalized medicine and treatment approaches in non-small-cell lung carcinoma 
Chemotherapy has been the traditional backbone for the management of metastatic lung cancer. Multiple trials have shown the benefits of treatment with platinum doublets in lung cancer. This “one treatment fits all” approach was further refined by the introduction of targeted agents and discovery of subpopulations of patients who benefited from treatment with these agents. It has also become evident that certain histologic subtypes of non-small-cell lung cancer respond better to one cytotoxic chemotherapy versus others. This has led to the concept of using histology to guide therapy. With the introduction of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors and the discovery of activating mutations in the EGFR gene, further personalization of treatment for subgroups of patients has become a reality. More recently, the presence of a fusion gene, echinoderm microtubule-associated protein-like 4 – anaplastic lymphoma kinase (EML4-ALK), was identified as the driver mutation in yet another subgroup of patients, and subsequent studies have led to approval of crizotinib in this group of patients. In this article, efforts in personalizing delivery of care based on the histological subtypes of lung cancer and the role of K-RAS and EGFR mutations, EML4/ALK translocation, and ERCC1 (excision repair cross-complementing 1) and EGFR expression in choosing appropriate treatments for patients with advanced lung cancer are discussed. This article also reviews the problem of resistance to EGFR tyrosine kinase inhibitors and the ongoing trials that target novel pathways and mechanisms that are implicated in resistance.
doi:10.2147/PGPM.S24258
PMCID: PMC3513233  PMID: 23226067
NSCLC; EGFR; cancer treatment
3.  A Rapid Method to Regenerate Piezoelectric Microcantilever Sensors (PEMS) 
Sensors (Basel, Switzerland)  2011;11(5):5520-5528.
Piezoelectric microcantilever sensors (PEMS) can be sensitive tools for the detection of proteins and cells in biological fluids. However, currently available PEMS can only be used a single time or must be completely stripped and refunctionalized prior to subsequent uses. Here we report the successful use of an alternative regeneration protocol employing high salt concentrations to remove the target, leaving the functional probe immobilized on the microcantilever surface. Our model system employed the extracellular domain (ECD) of recombinant human Epidermal Growth Factor Receptor (EGFR) as the probe and anti-human EGFR polyclonal antibodies as the target. We report that high concentrations of MgCl2 dissociated polyclonal antibodies specifically bound to EGFR ECD immobilized on the sensor surface without affecting its bioactivity. This simple regeneration protocol both minimized the time required to re-conjugate the probe and preserved the density of probe immobilized on PEMS surface, yielding identical biosensor sensitivity over a series of assays.
doi:10.3390/s110505520
PMCID: PMC3148522  PMID: 22413149
Piezoelectric microcantilever; biosensor; regeneration; antibody; antigen; biomarker
4.  A Rapid Method to Regenerate Piezoelectric Microcantilever Sensors (PEMS) 
Sensors (Basel, Switzerland)  2011;11(5):5520-5528.
Piezoelectric microcantilever sensors (PEMS) can be sensitive tools for the detection of proteins and cells in biological fluids. However, currently available PEMS can only be used a single time or must be completely stripped and refunctionalized prior to subsequent uses. Here we report the successful use of an alternative regeneration protocol employing high salt concentrations to remove the target, leaving the functional probe immobilized on the microcantilever surface. Our model system employed the extracellular domain (ECD) of recombinant human Epidermal Growth Factor Receptor (EGFR) as the probe and anti-human EGFR polyclonal antibodies as the target. We report that high concentrations of MgCl2 dissociated polyclonal antibodies specifically bound to EGFR ECD immobilized on the sensor surface without affecting its bioactivity. This simple regeneration protocol both minimized the time required to re-conjugate the probe and preserved the density of probe immobilized on PEMS surface, yielding identical biosensor sensitivity over a series of assays.
doi:10.3390/s110505520
PMCID: PMC3148522  PMID: 22413149
piezoelectric microcantilever; biosensor; regeneration; antibody; antigen; biomarker
5.  Immunotherapy of cancer 
European journal of pharmacology  2009;625(1-3):41-54.
Major advances have been made in the field of immunology in the past two decades. A better understanding of the molecular and cellular mechanisms controlling the immune system, has opened the door to many innovative and promising new cancer therapies that manipulate the immune response. For instance, toll-like receptor agonists have been shown to boost immune responses toward tumors. Also, a wide array of cell-based immunotherapies utilizing T cells, NK cells, and dendritic cells have been established. Furthermore, a rapidly expanding repertoire of monoclonal antibodies is being developed to treat tumors, and many of the available antibodies have demonstrated impressive clinical responses. Here, we examine some of these immunotherapeutic approaches currently in use or testing to treat cancer, and we examine available evidence with regards to mechanism and efficacy of these treatments.
doi:10.1016/j.ejphar.2009.09.067
PMCID: PMC2783916  PMID: 19837059
Immunotherapy; cancer; monoclonal antibody; cell-based therapy; toll-like receptors
6.  A Phase I Study of Single-Agent Nilotinib (AMN107) or in Combination with Imatinib in Patients with Imatinib-Resistant Gastrointestinal Stromal Tumors 
Purpose
To study the safety, tolerability and pharmacokinetics (PK) of the selective tyrosine kinase inhibitor nilotinib as a single-agent or in combination with imatinib in patients with advanced imatinib-resistant gastrointestinal stromal tumors (GIST).
Experimental Design
A Phase I intercohort dose-escalation trial was performed in patients who received either (1) single-agent nilotinib 400 mg bid or (2) escalating doses of nilotinib (200 mg qd, 400 mg qd, or 400 mg bid) plus imatinib 400 mg bid (10- and 14-hour interval daily), or (3) nilotinib 400 mg bid plus imatinib 400 mg qd. Safety, PK and tumor assessments were performed.
Results
Oral clearance (CL/F) of nilotinib was similar across the combination groups (mean CL/F=19.1-25.6 L/h), and lower than in the single-agent cohort (mean CL/F=35.6 L/h). A linear relationship between nilotinib daily dose and peak concentration (Cmax) was observed in the combination cohorts. Observed adverse events (AEs) were mostly non-hematological. Frequently reported AEs were rash (40%), fatigue (38%), abdominal pain (36%) and nausea (36%). Severe AEs (grade 3 or 4) included abdominal pain (13%) and rash (9%), the latter mainly with the combination. Thirty-eight patients had stable disease and two patients achieved partial response with a median progression-free survival of 134 days for the entire group.
Conclusions
Nilotinib alone or in combination with imatinib was well tolerated overall and showed clinical activity in imatinib-resistant GIST patients. This Phase I trial identified single-agent nilotinib 400 mg bid or combined with imatinib 400 mg qd as possible Phase II doses for further evaluation.
doi:10.1158/1078-0432.CCR-09-0542
PMCID: PMC2861356  PMID: 19723647
nilotinib; imatinib; gastrointestinal stromal tumors (GIST); Phase I; pharmacokinetics (PK)
7.  Phase I Dose Escalation, Pharmacokinetic and Pharmacodynamic Study of Naptumomab Estafenatox Alone in Patients With Advanced Cancer and With Docetaxel in Patients With Advanced Non–Small-Cell Lung Cancer 
Journal of Clinical Oncology  2009;27(25):4116-4123.
Purpose
Two phase I studies were conducted of ABR-217620 alone or in combination with docetaxel. This is a recombinant fusion protein consisting of a mutated variant of the superantigen staphylococcal enterotoxin E (SEA/E-120) linked to fragment antigen binding moiety of a monoclonal antibody recognizing the tumor-associated antigen 5T4.
Patients and Methods
Patients with non–small-cell lung cancer (NSCLC), pancreatic cancer (PC), and renal cell cancer (RCC) received 5 daily boluses of ABR-217620 (3-month cycles) in escalating doses to determine the maximum-tolerated dose (MTD; ABR-217620 dose escalation monotherapy [MONO] study). Doses were selected based on individual patient anti–SEA/E-120 titers pretreatment. Patients with NSCLC received 4 daily, escalating doses of ABR-217620 followed by docetaxel in 21-day cycles (ABR-217620 dose escalation combination with docetaxel [COMBO] study).
Results
Thirty-nine patients were enrolled in the MONO study and 13 were enrolled in the COMBO study. The monotherapy MTD was 26 μg/kg (NSCLC and PC) and 15 μg/kg (RCC). Dose-limiting toxicities (DLTs) in the MONO study were fever, hypotension, acute liver toxicity, and vascular leak syndrome. In the COMBO study, the MTD was 22 μg/kg (neutropenic sepsis). Adverse events included grade 1 to 2 fever, hypotension, nausea, and chills. Treatment caused a systemic increase of inflammatory cytokines and selective expansion of SEA/E-120 reactive T-cells. Tumor biopsies demonstrated T-cell infiltration after therapy. Fourteen patients (36%) had stable disease (SD) on day 56 of the MONO study. Two patients (15%) in the COMBO study had partial responses, one in a patient with progressive disease on prior docetaxel, and five patients (38%) had SD on day 56.
Conclusion
ABR-217620 was well tolerated with evidence of immunological activity and antitumor activity.
doi:10.1200/JCO.2008.20.2515
PMCID: PMC2734423  PMID: 19636016
8.  Rational use of cetuximab in the treatment of advanced non-small cell lung cancer 
OncoTargets and therapy  2009;2:251-260.
Lung cancer is the leading cause of mortality in the United States. Non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancers. Most NSCLC patients present with loco-regionally advanced or metastatic disease where response rates are low and median overall survival approximates 8 to 10 months. Chemotherapy is the mainstay of treatment for NSCLC patients with metastatic disease. Epidermal growth factor receptor (EGFR) and family of receptors play a critical role in lung cancer tumorigenesis. Cetuximab, a monoclonal antibody that binds the EGFR, has demonstrated preclinical and clinical activity against NSCLC. This review focuses on the use of cetuximab in NSCLC.
PMCID: PMC2886327  PMID: 20616912
cetuximab; lung cancer; monoclonal antibody

Results 1-8 (8)