PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  TP53 mutations detected in circulating tumor cells present in the blood of metastatic triple negative breast cancer patients 
Introduction
Circulating tumor cells (CTCs) are tumor cells shed from either primary tumors or its metastases that circulate in the peripheral blood of patients with metastatic cancers. The molecular characterization of the CTCs is critical to identifying the key drivers of cancer metastasis and devising therapeutic approaches. However, the molecular characterization of CTCs is difficult to achieve because their isolation is a major technological challenge.
Methods
CTCs from two triple negative breast cancer patients were enriched using CellSearch and single cells selected by DEPArray™. A TP53 R110 fs*13 mutation identified by next generation sequencing in the breast and chest skin biopsies of both patients was studied in single CTCs.
Results
From 6 single CTC isolated from one patient, 1 CTC had TP53 R110 delC, 1 CTC showed the TP53 R110 delG mutation, and the remaining 4 single CTCs showed the wild type p53 sequence; a pool of 14 CTCs isolated from the same patient also showed TP53 R110 delC mutation. In the tumor breast tissue of this patient, only the TP53 R110 delG mutation was detected. In the second patient a TP53 R110 delC mutation was detected in the chest wall skin biopsy; from the peripheral blood of this patient, 5 single CTC and 6 clusters of 2 to 6 CTCs were isolated; 3 of the 5 single CTCs showed the TP53 R110 delC mutation and 2 CTCs showed the wild type TP53 allele; from the clusters, 5 showed the TP53 R110 delC mutation, and 1 cluster the wild type TP53 allele. Single white blood cells isolated as controls from both patients only showed the wild type TP53 allele.
Conclusions
We are able to isolate uncontaminated CTCs and achieve single cell molecular analysis. Our studies showed the presence of different CTC sub-clones in patients with metastatic breast cancer. Some CTCs had the same TP53 mutation as their matching tumor samples although others showed either a different TP53 mutation or the wild type allele. Our results indicate that CTCs could represent a non-invasive source of cancer cells from which to determine genetic markers of the disease progression and potential therapeutic targets.
doi:10.1186/s13058-014-0445-3
PMCID: PMC4303125  PMID: 25307991
2.  Presence of anaplastic lymphoma kinase in inflammatory breast cancer 
SpringerPlus  2013;2:497.
Although Inflammatory Breast Cancer (IBC) is recognized as the most metastatic variant of locally advanced breast cancer, the molecular basis for the distinct clinical presentation and accelerated program of metastasis of IBC is unknown. Reverse phase protein arrays revealed activation of the receptor tyrosine kinase, anaplastic lymphoma kinase (ALK) and biochemically-linked downstream signaling molecules including JAK1/STAT3, AKT, mTor, PDK1, and AMPKβ in pre-clinical models of IBC. To evaluate the clinical relevance of ALK in IBC, analysis of 25 IBC patient tumors using the FDA approved diagnostic test for ALK genetic abnormalities was performed. These studies revealed that 20/25 (80%) had either increased ALK copy number, low level ALK gene amplification, or ALK gene expression, with a prevalence of ALK alterations in basal-like IBC. One of 25 patients was identified as having an EML4-ALK translocation. The generality of gains in ALK copy number in basal-like breast tumors with IBC characteristics was demonstrated by analysis of 479 breast tumors using the TGCA data-base and our newly developed 79 IBC-like gene signature. The small molecule dual tyrosine kinase cMET/ALK inhibitor, Crizotinib (PF-02341066/Xalkori®, Pfizer Inc), induced both cytotoxicity (IC50 = 0.89 μM) and apoptosis, with abrogation of pALK signaling in IBC tumor cells and in FC-IBC01 tumor xenograft model, a new IBC model derived from pleural effusion cells isolated from an ALK+ IBC patient. Based on these studies, IBC patients are currently being evaluated for the presence of ALK genetic abnormalities and when eligible, are being enrolled into clinical trials evaluating ALK targeted therapeutics.
Electronic supplementary material
The online version of this article (doi:10.1186/2193-1801-2-497) contains supplementary material, which is available to authorized users.
doi:10.1186/2193-1801-2-497
PMCID: PMC3791224  PMID: 24102046
Inflammatory breast cancer; Anaplastic lymphoma kinase; Reverse phase protein arrays; Crizotinib
3.  EZH2 knockdown suppresses the growth and invasion of human inflammatory breast cancer cells 
Introduction
Inflammatory breast cancer (IBC) is the most metastatic variant of breast cancer with the poorest survival in all types of breast cancer patients and presently therapeutic targets for IBC are very limited. Enhancer of zeste homolog 2 (EZH2) is frequently expressed in human IBC and its expression positively correlates with worse clinical outcome. However, the molecular basis for EZH2 promoting IBC has not been explored. Here, we investigated the functional role of EZH2 in IBC cells by examining the effects of its knockdown on the formation of tumor spheroids and invasion of these cells in vitro and in vivo in an orthotopic xenograft model.
Methods
SUM149 and a new IBC cell line-FC-IBC-02 derived from pleural effusion fluid of an IBC patient were used in this study. Specific knockdown of EZH2 was performed using short hairpin RNA (shRNA) specific to the human EZH2 gene. Cell growth and the formation of tumor spheroids were examined in vitro. The effects of EZH2 knockdown on IBC cell migration and invasion were examined by a Boyden chamber assay. For the in vivo tumor growth studies, IBC cells were orthotopically transplanted into the mammary fat pads of immunodeficient mice.
Results
The results showed that EZH2 is expressed at higher levels in human IBC cell lines compared with normal human mammary epithelial cells, and the knockdown of EZH2 expression significantly suppressed cell growth and tumor spheroid formation of human IBC cells in vitro. In addition, EZH2 knockdown inhibited the migration and invasion of IBC cells. Significantly, EZH2 knockdown suppressed the angiogenesis and tumor growth of IBC cells in vivo.
Conclusions
Our results provide direct evidence that EZH2 is critical for the formation of tumor spheroids and invasion of human IBC cells and could be a potential target for developing novel therapeutic strategies for human IBC.
doi:10.1186/1756-9966-32-70
PMCID: PMC3850122  PMID: 24294976
Inflammatory breast cancer; EZH2; Cancer stem cell; Tumor spheroid formation
4.  Circulating tumor cells (CTCs) in breast cancer: a diagnostic tool for prognosis and molecular analysis 
Metastatic breast cancer (MBC) is characterized by a combination of tumor growth, proliferation and metastatic progression and is typically managed with palliative intent. The benefit of standard systemic therapies is relatively limited and the disease is considered incurable suggesting the need to investigate the biological drivers of the various phases of the metastatic process in order to improve the selection of molecularly driven therapies. The detection, enumeration and molecular analysis of circulating tumor cells (CTCs) provide an intriguing opportunity to advance this knowledge. CTCs enumerated by the Food and Drugs Administration-cleared CellSearch® system are an independent prognostic factor of progression-free survival (PFS) and overall survival (OS) in MBC patients. Several published papers demonstrated the poor prognosis for MBC patients that presented basal CTC count ≥5 in 7.5 mL of blood. Therefore, the enumeration of CTCs during treatment for MBC provides a tool with the ability to predict progression of disease earlier than standard timing of anatomical assessment using conventional radiological tests. During the metastatic process cancer cells exhibit morphological and phenotypic plasticity undergoing epithelial-mesenchymal transition (EMT). This important phenomenon is associated with down regulation of epithelial marker (e.g., EpCAM) with potential limitations in the applicability of current CTCs enrichment methods. Such observations translated in a number of investigations aimed at improving our capabilities to enumerate and perform molecular characterization of CTCs. Theoretically, the phenotypic analysis of CTCs can represent a “liquid” biopsy of breast tumor that is able to identify a new potential target against the metastatic disease and advanced the development and monitoring of personalized therapies.
doi:10.3978/j.issn.1000-9604.2012.11.03
PMCID: PMC3551332  PMID: 23359451
Circulating tumor cells (CTCs); metastatic breast cancer (MBC); epithelial-mesenchymal transition (EMT); cancer stem cells
5.  Phase I Dose Escalation, Pharmacokinetic and Pharmacodynamic Study of Naptumomab Estafenatox Alone in Patients With Advanced Cancer and With Docetaxel in Patients With Advanced Non–Small-Cell Lung Cancer 
Journal of Clinical Oncology  2009;27(25):4116-4123.
Purpose
Two phase I studies were conducted of ABR-217620 alone or in combination with docetaxel. This is a recombinant fusion protein consisting of a mutated variant of the superantigen staphylococcal enterotoxin E (SEA/E-120) linked to fragment antigen binding moiety of a monoclonal antibody recognizing the tumor-associated antigen 5T4.
Patients and Methods
Patients with non–small-cell lung cancer (NSCLC), pancreatic cancer (PC), and renal cell cancer (RCC) received 5 daily boluses of ABR-217620 (3-month cycles) in escalating doses to determine the maximum-tolerated dose (MTD; ABR-217620 dose escalation monotherapy [MONO] study). Doses were selected based on individual patient anti–SEA/E-120 titers pretreatment. Patients with NSCLC received 4 daily, escalating doses of ABR-217620 followed by docetaxel in 21-day cycles (ABR-217620 dose escalation combination with docetaxel [COMBO] study).
Results
Thirty-nine patients were enrolled in the MONO study and 13 were enrolled in the COMBO study. The monotherapy MTD was 26 μg/kg (NSCLC and PC) and 15 μg/kg (RCC). Dose-limiting toxicities (DLTs) in the MONO study were fever, hypotension, acute liver toxicity, and vascular leak syndrome. In the COMBO study, the MTD was 22 μg/kg (neutropenic sepsis). Adverse events included grade 1 to 2 fever, hypotension, nausea, and chills. Treatment caused a systemic increase of inflammatory cytokines and selective expansion of SEA/E-120 reactive T-cells. Tumor biopsies demonstrated T-cell infiltration after therapy. Fourteen patients (36%) had stable disease (SD) on day 56 of the MONO study. Two patients (15%) in the COMBO study had partial responses, one in a patient with progressive disease on prior docetaxel, and five patients (38%) had SD on day 56.
Conclusion
ABR-217620 was well tolerated with evidence of immunological activity and antitumor activity.
doi:10.1200/JCO.2008.20.2515
PMCID: PMC2734423  PMID: 19636016

Results 1-5 (5)