Search tips
Search criteria

Results 1-25 (122)

Clipboard (0)

Select a Filter Below

more »
more »
Year of Publication
more »
1.  Development and validation of a simple lupus severity index using ACR criteria for classification of SLE 
Lupus Science & Medicine  2016;3(1):e000136.
To develop a simple systemic lupus erythematosus (SLE) severity index that requires knowledge of only American College of Rheumatology (ACR) criteria and subcriteria.
This study used demographic, mortality and medical records data of 1915 patients with lupus from the Lupus Family Registry and Repository. The data were randomly split (2:1 ratio) into independent training and validation sets. A logistic regression with ridge penalty was used to model the probability of being prescribed major immunosuppressive drugs—a surrogate indicator of lupus severity. ACR criteria and subcriteria were used as predictor variables in this model, and the resulting regression coefficient estimates obtained from the training data were used as item weightings to construct the severity index.
The resulting index was tested on the independent validation dataset and was found to have high predictive accuracy for immunosuppressive use and early mortality. The index was also found to be strongly correlated with a previously existing severity score for lupus. In addition, demographic factors known to influence lupus severity (eg, age of onset, gender and ethnicity) all showed robust associations with our severity index that were consistent with observed clinical trends.
This new index can be easily computed using ACR criteria, which may be among the most readily available data elements from patient medical records. This tool may be useful in lupus research, especially large dataset analyses to stratify patients by disease severity, an important prognostic indicator in SLE.
PMCID: PMC4800735  PMID: 27026812
Lupus Severity; Severity Index; ACR criteria
2.  IgH sequences in common variable immune deficiency reveal altered B cell development and selection** 
Science translational medicine  2015;7(302):302ra135.
Common variable immune deficiency (CVID) is the most common symptomatic primary immune deficiency, affecting ∼1 in 25,000 persons. These patients suffer from impaired antibody responses, autoimmunity, and susceptibility to lymphoid cancers. To explore the cellular basis for these clinical phenotypes, we conducted high-throughput DNA sequencing of immunoglobulin heavy chain gene rearrangements from 93 CVID patients and 105 control subjects and sorted naïve and memory B cells from 13 of the CVID patients and 10 of the control subjects. CVID patients showed abnormal VDJ rearrangement and abnormal formation of complementarity determining region 3 (CDR3). We observed decreased selection against antibodies with long CDR3 regions in memory repertoires and decreased V gene replacement, offering possible mechanisms for increased patient autoreactivity. Our data indicate that patient immunodeficiency might derive both from decreased diversity of the naïve B cell pool and decreased somatic hypermutation in memory repertoires. CVID patients also exhibited abnormal clonal expansion of unmutated B cells relative to controls. Although impaired B cell germinal center activation is commonly viewed as causative in CVID, these data indicate that CVID B cells diverge from controls as early as the pro-B cell stage and suggest possible explanations for the increased incidence of autoimmunity, immunodeficiency, and lymphoma CVID patients.
PMCID: PMC4584259  PMID: 26311730
3.  Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity 
eLife  null;5:e12089.
Targeted sequencing of sixteen SLE risk loci among 1349 Caucasian cases and controls produced a comprehensive dataset of the variations causing susceptibility to systemic lupus erythematosus (SLE). Two independent disease association signals in the HLA-D region identified two regulatory regions containing 3562 polymorphisms that modified thirty-seven transcription factor binding sites. These extensive functional variations are a new and potent facet of HLA polymorphism. Variations modifying the consensus binding motifs of IRF4 and CTCF in the XL9 regulatory complex modified the transcription of HLA-DRB1, HLA-DQA1 and HLA-DQB1 in a chromosome-specific manner, resulting in a 2.5-fold increase in the surface expression of HLA-DR and DQ molecules on dendritic cells with SLE risk genotypes, which increases to over 4-fold after stimulation. Similar analyses of fifteen other SLE risk loci identified 1206 functional variants tightly linked with disease-associated SNPs and demonstrated that common disease alleles contain multiple causal variants modulating multiple immune system genes.
eLife digest
The human immune system defends the body against microbes and other threats. However, if this process goes wrong the immune system can attack the body’s own healthy cells, which can lead to serious autoimmune diseases.
Systemic lupus erythematosus (SLE) is an autoimmune disease in which immune cells often attack internal organs – including the kidneys, nervous system and heart. Over the past decade, multiple genes have been linked with an increased risk of SLE. However, it is largely unknown how the sequences of these genes differ between individuals with SLE and healthy individuals, and the precise changes that lead to an increased risk of SLE are also not clear.
Now, Raj, Rai et al. have determined the genetic sequences of over 700 people with SLE and over 500 healthy individuals and looked for differences that influence susceptibility to the disease. The vast majority of differences were discovered in stretches of DNA that regulate the expression of nearby genes, rather than in DNA that encodes the structures of proteins. Notably, extensive differences were found in a region of the human genome that regulates the production of proteins called Human Leukocyte Antigen class II molecules; which are known to play a critical role in activating the immune system. Raj, Rai et al. found that slight changes to the regulatory DNA sequences resulted in an overabundance of these proteins, which led to a hyperactive immune system that is strongly associated with SLE.
Future studies could now ask if the changes to the regulatory DNA sequences highlighted by Raj, Rai et al. increase susceptibility to other autoimmune disorders as well. It may also be possible to use the increased understanding of how the immune system is regulated to develop new ways to minimize the rejection of organ transplants.
PMCID: PMC4811771  PMID: 26880555
targeted sequencing; HLA; SLE risk; haplotype; risk allele; LD; Human
4.  Influenza A (H1N1) Virus Infection Triggers Severe Pulmonary Inflammation in Lupus-Prone Mice following Viral Clearance 
Journal of autoimmunity  2015;57:66-76.
Each year, up to one fifth of the United States population is infected with influenza virus. Although mortality rates are low, hundreds of thousands are hospitalized each year in the United States. Specific high risk groups, such as those with suppressed or dysregulated immune systems, are at greater danger for influenza complications. Respiratory infections are a common cause of hospitalizations and early mortality in patients with systemic lupus erythematosus (SLE); however, whether this increased infection risk is a consequence of the underlying dysregulated immune background and/or immunosuppressing drugs is unknown. To evaluate the influenza immune response in the context of lupus, as well as assess the effect of infection on autoimmune disease in a controlled setting, we infected lupus-prone MRL/MpJ-Faslpr mice with influenza virus A PR/8/34 H1N1. Interestingly, we found that Faslpr mice generated more influenza A virus specific T cells with less neutrophil accumulation in the lung during acute infection. Moreover, Faslpr mice produced fewer flu-specific IgG and IgM antibodies, but effectively cleared the virus. Further, increased extrinsic apoptosis during influenza infection led to a delay in autoimmune disease pathology with decreased severity of splenomegaly and kidney disease. Following primary influenza A infection, Faslpr mice had severe complications during the contraction and resolution phase with widespread severe pulmonary inflammation. Our findings suggest that influenza infection may not exacerbate autoimmune pathology in mice during acute infection as a direct result of virus induced apoptosis. Additionally, autoimmunity drives an enhanced antigen-specific T cell response to clear the virus, but persisting pulmonary inflammation following viral clearance may cause complications in this lupus animal model.
PMCID: PMC4324011  PMID: 25563403
Influenza; SLE; Pulmonary Inflammation; Lupus; MRL-Faslpr
5.  Differential Expression of the Transcription Factor ARID3a in Lupus Patient Hematopoietic Progenitor Cells1 
Although hematopoietic progenitor/stem cells (HPSCs) are used for transplantation, characterization of the multiple subsets within this population in man has lagged behind similar studies in mice. We found that expression of the DNA-binding protein, ARID3a, in mouse stem cells was important for normal development of hematopoietic lineages; however, progenitors expressing ARID3a in man have not been defined. We previously showed increased numbers of ARID3a+ B cells in nearly half of systemic lupus erythematosus (SLE) patients, and that total numbers of ARID3a+ B cells were associated with increased disease severity. Because expression of ARID3a in those SLE patients occurred throughout all B cell subsets, we hypothesized that ARID3a expression in patient HSPCs might also be increased relative to expression in healthy controls. Our data now show that ARID3a expression is not limited to any defined subset of HPSCs in either healthy controls or SLE patients. Numbers of ARID3a+ HSPCs in SLE patients were increased over numbers of ARID3a+ cells in healthy controls. While all SLE-derived HPSCs exhibited poor colony formation in vitro compared to controls, SLE HPSCs with high numbers of ARID3a+ cells yielded increased numbers of cells expressing the early progenitor marker, CD34. SLE HPSCs with high numbers of ARID3a+ cells also more readily generated autoantibody producing cells than HPSCs with lower levels of ARID3a in a humanized mouse model. These data reveal new functions for ARID3a in early hematopoiesis and suggest that knowledge regarding ARID3a levels in HPSCs could be informative for applications requiring transplantation of those cells.
PMCID: PMC4297684  PMID: 25535283
6.  Preferential association of a functional variant in complement receptor 2 with antibodies to double-stranded DNA 
Annals of the Rheumatic Diseases  2014;75(1):242-252.
Systemic lupus erythematosus (SLE; OMIM 152700) is characterised by the production of antibodies to nuclear antigens. We previously identified variants in complement receptor 2 (CR2/CD21) that were associated with decreased risk of SLE. This study aimed to identify the causal variant for this association.
Genotyped and imputed genetic variants spanning CR2 were assessed for association with SLE in 15 750 case-control subjects from four ancestral groups. Allele-specific functional effects of associated variants were determined using quantitative real-time PCR, quantitative flow cytometry, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP)-PCR.
The strongest association signal was detected at rs1876453 in intron 1 of CR2 (pmeta=4.2×10−4, OR 0.85), specifically when subjects were stratified based on the presence of dsDNA autoantibodies (case-control pmeta=7.6×10−7, OR 0.71; case-only pmeta=1.9×10−4, OR 0.75). Although allele-specific effects on B cell CR2 mRNA or protein levels were not identified, levels of complement receptor 1 (CR1/CD35) mRNA and protein were significantly higher on B cells of subjects harbouring the minor allele (p=0.0248 and p=0.0006, respectively). The minor allele altered the formation of several DNA protein complexes by EMSA, including one containing CCCTC-binding factor (CTCF), an effect that was confirmed by ChIP-PCR.
These data suggest that rs1876453 in CR2 has long-range effects on gene regulation that decrease susceptibility to lupus. Since the minor allele at rs1876453 is preferentially associated with reduced risk of the highly specific dsDNA autoantibodies that are present in preclinical, active and severe lupus, understanding its mechanisms will have important therapeutic implications.
PMCID: PMC4717392  PMID: 25180293
Systemic Lupus Erythematosus; Autoantibodies; Gene Polymorphism; B cells
7.  The IRF5–TNPO3 association with systemic lupus erythematosus has two components that other autoimmune disorders variably share 
Kottyan, Leah C. | Zoller, Erin E. | Bene, Jessica | Lu, Xiaoming | Kelly, Jennifer A. | Rupert, Andrew M. | Lessard, Christopher J. | Vaughn, Samuel E. | Marion, Miranda | Weirauch, Matthew T. | Namjou, Bahram | Adler, Adam | Rasmussen, Astrid | Glenn, Stuart | Montgomery, Courtney G. | Hirschfield, Gideon M. | Xie, Gang | Coltescu, Catalina | Amos, Chris | Li, He | Ice, John A. | Nath, Swapan K. | Mariette, Xavier | Bowman, Simon | Rischmueller, Maureen | Lester, Sue | Brun, Johan G. | Gøransson, Lasse G. | Harboe, Erna | Omdal, Roald | Cunninghame-Graham, Deborah S. | Vyse, Tim | Miceli-Richard, Corinne | Brennan, Michael T. | Lessard, James A. | Wahren-Herlenius, Marie | Kvarnström, Marika | Illei, Gabor G. | Witte, Torsten | Jonsson, Roland | Eriksson, Per | Nordmark, Gunnel | Ng, Wan-Fai | Anaya, Juan-Manuel | Rhodus, Nelson L. | Segal, Barbara M. | Merrill, Joan T. | James, Judith A. | Guthridge, Joel M. | Hal Scofield, R. | Alarcon-Riquelme, Marta | Bae, Sang-Cheol | Boackle, Susan A. | Criswell, Lindsey A. | Gilkeson, Gary | Kamen, Diane L. | Jacob, Chaim O. | Kimberly, Robert | Brown, Elizabeth | Edberg, Jeffrey | Alarcón, Graciela S. | Reveille, John D. | Vilá, Luis M. | Petri, Michelle | Ramsey-Goldman, Rosalind | Freedman, Barry I. | Niewold, Timothy | Stevens, Anne M. | Tsao, Betty P. | Ying, Jun | Mayes, Maureen D. | Gorlova, Olga Y. | Wakeland, Ward | Radstake, Timothy | Martin, Ezequiel | Martin, Javier | Siminovitch, Katherine | Moser Sivils, Kathy L. | Gaffney, Patrick M. | Langefeld, Carl D. | Harley, John B. | Kaufman, Kenneth M.
Human Molecular Genetics  2014;24(2):582-596.
Exploiting genotyping, DNA sequencing, imputation and trans-ancestral mapping, we used Bayesian and frequentist approaches to model the IRF5–TNPO3 locus association, now implicated in two immunotherapies and seven autoimmune diseases. Specifically, in systemic lupus erythematosus (SLE), we resolved separate associations in the IRF5 promoter (all ancestries) and with an extended European haplotype. We captured 3230 IRF5–TNPO3 high-quality, common variants across 5 ethnicities in 8395 SLE cases and 7367 controls. The genetic effect from the IRF5 promoter can be explained by any one of four variants in 5.7 kb (P-valuemeta = 6 × 10−49; OR = 1.38–1.97). The second genetic effect spanned an 85.5-kb, 24-variant haplotype that included the genes IRF5 and TNPO3 (P-valuesEU = 10−27–10−32, OR = 1.7–1.81). Many variants at the IRF5 locus with previously assigned biological function are not members of either final credible set of potential causal variants identified herein. In addition to the known biologically functional variants, we demonstrated that the risk allele of rs4728142, a variant in the promoter among the lowest frequentist probability and highest Bayesian posterior probability, was correlated with IRF5 expression and differentially binds the transcription factor ZBTB3. Our analytical strategy provides a novel framework for future studies aimed at dissecting etiological genetic effects. Finally, both SLE elements of the statistical model appear to operate in Sjögren's syndrome and systemic sclerosis whereas only the IRF5–TNPO3 gene-spanning haplotype is associated with primary biliary cirrhosis, demonstrating the nuance of similarity and difference in autoimmune disease risk mechanisms at IRF5–TNPO3.
PMCID: PMC4275071  PMID: 25205108
8.  Assessment of Translational and Interdisciplinary Clinical Research at an Oklahoma Health Sciences Center 
In response to National Institutes of Health initiatives to improve translation of basic science discoveries we surveyed faculty to assess patterns of and barriers to translational research in Oklahoma.
An online survey was administered to University of Oklahoma Health Sciences Center, College of Medicine faculty, which included demographic and research questions.
Responses were received from 126 faculty members (24%). Two-thirds spent ≥20% time on research; among these, 90% conduct clinical and translational research. Identifying funding; recruiting research staff and participants; preparing reports and agreements; and protecting research time were commonly perceived as at least moderate barriers to conducting research. While respondents largely collaborated within their discipline, clinical investigators were more likely than basic science investigators to engage in interdisciplinary research.
While engagement in translational research is common, specific barriers impact the research process. This could be improved through an expanded interdisciplinary collaboration and research support structure.
PMCID: PMC4686264  PMID: 26242016
9.  How should lupus flares be measured? Deconstruction of the Safety of Estrogen in Lupus Erythematosus National Assessment–Systemic Lupus Erythematosus Disease Activity Index flare index 
Rheumatology (Oxford, England)  2014;53(12):2175-2181.
Objective. Accurate assessment of lupus flares is critical but problematic in clinical trials. This study examined the impact of modifications to the classic Safety of Estrogens in Lupus Erythematosus National Assessment (SELENA)-SLEDAI flare index (cSFI).
Methods. Ninety-one SLE patient records were evaluated at two visits at which the SLEDAI and BILAG had been scored prospectively. The cSFI was compared with an experimental version (eSFI) that eliminated medication criteria and separated the mild/moderate flare category into its components by clinical judgement based on records. The revised SFI (SFI-R) and some physician’s global assessments (PGAs) were also scored using chart notes.
Results. eSFI-rated moderate flares had higher PGA and BILAG scores than those rated as mild. When medication criteria were excluded, 42 of 55 cSFI severe flares and 15 of 49 mild/moderate flares were downgraded in severity. Comparing flares that remained severe with those that were downgraded, disease activity was higher by PGA (P < 0.001), SLEDAI (P < 0.001), BILAG (P < 0.001), number of active BILAG organs (P < 0.04) and flaring SFI-R organs (P < 0.01). PGA (P < 0.001) and the number of SFI-R domains flaring (P < 0.001) were higher in mild/moderate eSFI flares than in those that were downgraded. Twenty-one of 83 (25%) medication changes occurred with no flare. Forty-six of 52 (88%) medication changes defining severe flare by cSFI involved patients rated by physicians with no, mild or moderate flares.
Conclusion. A deconstructed flare index improves the discrimination of mild from moderate flares and selects more ill patients with true clinical worsening for each category of flare.
PMCID: PMC4542656  PMID: 24729400
systemic lupus erythematosus; outcome measures; SELENA-SLEDAI flare index; revised SELENA flare index; SLEDAI; BILAG; physician’s global assessment; medications
The serologic hallmark of primary Sjögren’s syndrome (pSS) is IgG antibodies specific for Ro (SSA) and La (SSB). Molecular characteristics of glandular-derived B cells at the site of pSS inflammation have been described; however, parallels between glandular antibody-secreting cells (ASC) and serologic antibody specificities have not been evaluated. We utilized recombinant monoclonal antibody (hmAb) technology to study salivary gland-(SG) derived ASC specificities, evaluating their molecular characteristics and identified IgG antibody specificity.
hmAbs were generated from glandular IgG ASC. Heavy and light chain usage and immunoglobulin subclass were analyzed by sequencing. ELISA, indirect immunofluorescence, enzyme immunoassay and 35S immunoprecipitation analysis were used to determine antibody specificity.
Evaluation of single ASCs from SG biopsies of patients with primary SS or with SS and overlapping SLE revealed significant concordance between serum autoantibody and glandular ASC specificities. Glandular-derived ASC heavy and light chains were extensively somatically hypermutated, indicative of antigen-driven responses. Specifically, we produced the first fully human monoclonal autoantibodies derived from salivary glands in this study.
Salivary glands in SS patients are a site for antibody production, which extend beyond the canonical Ro and/or La SS specificities. Furthermore, we demonstrate that glandular antibody production strongly reflects the serological humoral response in the two patients studied herein.
PMCID: PMC4245382  PMID: 25199908
11.  Disease Activity in Lupus Correlates with Expression of the Transcription Factor ARID3a 
Systemic lupus erythematosus (SLE) is a complex and multifactorial autoimmune disease with striking clinical, immunologic and genetic heterogeneity, despite nearly ubiquitous antinuclear antibody (ANA) production. Multiple gene polymorphisms have been associated with the disease, but individually account for only a very small percentage of overall SLE risk. In earlier studies, constitutive expression of the DNA-binding protein, A+T rich interacting domain 3a (ARID3a) in transgenic mouse B lymphocyte lineage cells led to spontaneous ANA production and preferential development of B cells associated with production of polyreactive antibodies. Therefore, we asked if ARID3a was over-expressed in B lymphocytes of SLE patients and if ARID3a expression was associated with disease severity.
A cross section of SLE patients and age and gender-matched controls were analyzed longitudinally for lupus disease activity, numbers of ARID3a+ peripheral blood mononuclear B cells from multiple B cell subsets, immunoglobulin and cytokine levels.
Fifty of 115 patients (43%) had dramatically increased numbers of ARID3a+ B cells compared to healthy controls. ARID3a is not expressed in naïve B cells of healthy controls, but was abundant in these precursors of antibody-secreting cells in SLE patients. Total numbers of ARID3a+ B cells correlated with increased disease activity as defined by SLE Disease Activity Index scores in individuals assessed at three time points.
These findings identify B cell anomalies in SLE that allow stratification of patient samples based on ARID3a expression and implicate ARID3a as a potential marker of CD19+ B lymphocytes correlated with disease activity.
PMCID: PMC4245462  PMID: 25185498
12.  Protective environmental factors for neuromyelitis optica 
Neurology  2014;83(21):1923-1929.
To determine whether early environmental factors, such as cesarean delivery, breastfeeding, and exposure to smoking or herpes viruses, are associated with neuromyelitis optica (NMO) risk in children.
This is a case-control study of pediatric NMO, multiple sclerosis (MS), and healthy subjects. Early-life exposures were obtained by standardized questionnaire. Epstein-Barr virus, cytomegalovirus, and herpes simplex virus 1 antibody responses were determined by ELISA. Multivariate logistic regression models were used to adjust for age at sampling, sex, race, and ethnicity.
Early-life exposures were obtained from 36 pediatric subjects with NMO, 491 with MS, and 224 healthy controls. Daycare (odds ratio [OR] 0.33, 95% confidence interval [CI] 0.14, 0.78; p < 0.01) and breastfeeding (OR 0.42, 95% CI 0.18, 0.99; p = 0.05) were associated with lower odds of having NMO compared with healthy subjects. Cesarean delivery tended to be associated with 2-fold-higher odds of NMO compared with having MS/clinically isolated syndrome (OR 1.98, 95% CI 0.88, 4.59; p = 0.12) or with being healthy (OR 1.95, 95% CI 0.81, 4.71; p = 0.14). Sera and DNA were available for 31 subjects with NMO, 189 with MS, and 94 healthy controls. Epstein-Barr virus, herpes simplex virus 1, cytomegalovirus exposure, and being HLA-DRB1*15 positive were not associated with odds of having NMO compared with healthy subjects.
Exposure to other young children may be an early protective factor against the development of NMO, as previously reported for MS, consistent with the hypothesis that infections contribute to disease risk modification. Unlike MS, pediatric NMO does not appear to be associated with exposures to common herpes viruses.
PMCID: PMC4248458  PMID: 25339213
13.  Preclinical SLE 
PMCID: PMC4301850  PMID: 25437281
SLE; lupus; autoantibodies; preclinical autoimmunity; incomplete lupus
14.  Systemic Lupus Erythematosus is Associated with Uranium Exposure in a Community Living Near a Uranium Processing Plant: A Nested Case-Control Study 
Explore the hypothesis that cases of SLE will be found more frequently in community members with high prior uranium exposure in the Fernald Community Cohort (FCC).
A nested case control study was performed. The FCC is a volunteer population that lived near a uranium ore processing plant in Fernald, Ohio, USA during plant operation and members were monitored for 18 years. Uranium plant workers were excluded. SLE cases were identified using American College of Rheumatology classification criteria, laboratory testing, and medical record review. Each case was matched to four age-, race-, and sex-matched controls. Sera from potential cases and controls were screened for autoantibodies. Cumulative uranium particulate exposure was calculated using a dosimetry model. Logistic regression with covariates was used to calculate odds ratios (OR) with 95% confidence intervals (CI).
The FCC includes 4,187 individuals with background uranium exposure, 1,273 with moderate exposure, and 2,756 with higher exposure. SLE was confirmed in 23 of 31 individuals with a lupus ICD9 code, and in 2 of 43 other individuals prescribed hydroxychloroquine. The female:male ratio was 5.25:1. Of the 25 SLE cases, 12 were in the higher exposure group. SLE was associated with higher uranium exposure (OR 3.92, 95% CI 1.131-13.588, p = 0.031).
High uranium exposure is associated with SLE relative to matched controls in this sample of uranium exposed individuals. Potential explanations for this relationship include possible autoimmune or estrogen effects of uranium, somatic mutation, epigenetic effects, or effects of some other unidentified accompanying exposure.
PMCID: PMC4211941  PMID: 25103365
15.  B-Cell and Monocyte Contribution to Systemic Lupus Erythematosus Identified by Cell-Type-Specific Differential Expression Analysis in RNA-Seq Data 
Bioinformatics and Biology Insights  2015;9(Suppl 3):11-19.
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by complex interplay among immune cell types. SLE activity is experimentally assessed by several blood tests, including gene expression profiling of heterogeneous populations of cells in peripheral blood. To better understand the contribution of different cell types in SLE pathogenesis, we applied the two methods in cell-type-specific differential expression analysis, csSAM and DSection, to identify cell-type-specific gene expression differences in heterogeneous gene expression measures obtained using RNA-seq technology. We identified B-cell-, monocyte-, and neutrophil-specific gene expression differences. Immunoglobulin-coding gene expression was altered in B-cells, while a ribosomal signature was prominent in monocytes. On the contrary, genes differentially expressed in the heterogeneous mixture of cells did not show any functional enrichment. Our results identify antigen binding and structural constituents of ribosomes as functions altered by B-cell- and monocyte-specific gene expression differences, respectively. Finally, these results position both csSAM and DSection methods as viable techniques for cell-type-specific differential expression analysis, which may help uncover pathogenic, cell-type-specific processes in SLE.
PMCID: PMC4599594  PMID: 26512198
cell-type-specific; deconvolution; RNA-seq; SLE; csSAM; DSection
16.  Humoral responses to independent vaccinations are correlated in healthy boosted adults 
Vaccine  2014;32(43):5624-5631.
Roughly half of U.S. adults do not receive recommended booster vaccinations, but protective antibody levels are rarely measured in adults. Demographic factors, vaccination history, and responses to other vaccinations could help identify at-risk individuals. We sought to characterize rates of seroconversion and determine associations of humoral responses to multiple vaccinations in healthy adults.
Humoral responses toward measles, mumps, tetanus toxoid, pertussis, hepatitis B surface antigen, and anthrax protective antigen were measured by ELISA in post-immunization samples from 1,465 healthy U.S. military members. We examined the effects of demographic and clinical factors on immunization responses, as well as assessed correlations between vaccination responses.
Subsets of boosted adults did not have seroprotective levels of antibodies toward measles (10.4%), mumps (9.4%), pertussis (4.7%), hepatitis B (8.6%) or protective antigen (14.4%) detected. Half-lives of antibody responses were generally long (>30 years). Measles and mumps antibody levels were correlated (r=0.31, p<0.001), but not associated with select demographic features or vaccination history. Measles and mumps antibody levels also correlated with tetanus antibody response (r=0.11, p<0.001).
Vaccination responses are predominantly robust and vaccine specific. However, a small but significant portion of the vaccinated adult population may not have quantitative seroprotective antibody to common vaccine-preventable infections.
PMCID: PMC4323156  PMID: 25140930
Anthrax Vaccine Adsorbed; measles; mumps; tetanus; hepatitis B; pertussis
17.  Genetic Association of CD247 (CD3ζ) with SLE in a Large-Scale Multiethnic Study 
Genes and immunity  2015;16(2):142-150.
A classic T-cell phenotype in Systemic lupus erythematosus (SLE) is the downregulation and replacement of the CD3ζ chain that alters TCR signaling. However, genetic associations with SLE in the human CD247 locus that encodes CD3ζ are not well established and require replication in independent cohorts. Our aim was therefore to examine, localize and validate CD247-SLE association in a large multi-ethnic population. We typed 44 contiguous CD247 SNPs in 8 922 SLE patients and 8 077 controls from four ethnically distinct populations. The strongest associations were found in the Asian population (11 SNPs in intron 1, 4.99×10−4
PMCID: PMC4371129  PMID: 25569266
In recent years, genome wide association studies have led to an explosion in the identification of regions containing confirmed genetic risk variants within complex human diseases, for example in systemic lupus erythematosus (SLE). Many of these strongest SLE genetic associations can be divided into groups based upon their potential roles in different processes implicated in lupus pathogenesis, including ubiquitination (a process of marking proteins for degradation), DNA degradation, innate immunity, cellular immunity (B cell, T cell, neutrophil, monocytes), lymphocyte development, and antigen presentation. Recent advances have also demonstrated several genetic associations with SLE subphenotypes and subcriteria, such as autoantibody production, lupus nephritis, serositis, and arthritis. Despite the broad range of lupus genetic studies to date, many areas for further exploration remain to move lupus genetic studies toward clinically informative endpoints, such as identifying individuals at the greatest risk of end-organ damage, early mortality or poor response to a specific therapeutic regimen.
PMCID: PMC4104419  PMID: 25034154
SLE; lupus; genetics; clinical subphenotypes; GWAS; nephritis; autoantibodies
Systemic lupus erythematosus (SLE) is a multifaceted disease characterized by immune dysregulation and unpredictable disease activity. This study evaluated changes in plasma concentrations of soluble mediators preceding clinically-defined disease flares.
Soluble mediators (n=52) were examined, including cytokines, chemokines, and soluble receptors, using validated multiplex bead-based or enzyme-linked immunosorbent assays in plasma from European American SLE patients who developed disease flare 6 or 12 weeks after baseline assessment were compared to 28 matched SLE patients without impending flare and 28 matched healthy controls (n=84). For a subset, mediators within samples preceding SLE disease flare and during a clinically stable period from the same individual were compared.
Compared to clinically stable patients, patients with impending flare had significant (p≤0.01) alterations in 27 soluble mediators at baseline with significantly higher levels of pro-inflammatory mediators, including Th1, Th2, and Th17-type cytokines, several weeks before clinical flare. Baseline levels of regulatory cytokines, including IL-10 and TGF-β, were higher in non-flare SLE patients, while baseline levels of soluble TNFRI, TNFRII, Fas, FasL, and CD40L were significantly greater in pre-flare patients (p≤0.002). A normalized and weighted combined soluble mediator score was significantly higher in pre-flare SLE patients versus those with stable disease (p≤0.0002).
Pro-inflammatory adaptive cytokines and shed TNF receptors, are elevated prior to disease flare, while regulatory mediators are elevated during periods of stable disease. Alterations in the balance between inflammatory and regulatory mediators may help identify patients at risk of disease flare and help decipher SLE pathogenic mechanisms.
PMCID: PMC4128244  PMID: 24578190
SLE; disease flare; cytokines
Lupus Science & Medicine  2015;2(1):e000087.
This review describes eight ‘great ideas’ regarding bench-to-bedside considerations in systemic lupus erythematosus (SLE) presented at the second international LUPUS meeting in Quebec, September 2014. The topics included: correcting the impaired clearance of apoptotic fragments; optimisation of clinical trial design: the PERFECT (Pre Evaluation Reducing Frighteningly Elevated Coverable Targets) study; lipidomics and metabolomics in SLE; importance of the inflammasome; identification and treatment of asymptomatic autoimmunity: prevention of SLE; combining low doses of hydroxychloroquine and quinacrine for long-term maintenance therapy of SLE; reducing emergency room visits and the critical relevance of the autoantigen.
PMCID: PMC4493165  PMID: 26167290
Systemic Lupus Erythematosus; Inflammation; Autoimmunity; Disease Activity; Lupus Nephritis
PLoS ONE  2015;10(5):e0125618.
Breakdown of B cell tolerance is a cardinal feature of systemic lupus erythematosus (SLE). Increased numbers of autoreactive mature naïve B cells have been described in SLE patients and autoantibodies have been shown to arise from autoreactive and non-autoreactive precursors. How these defects, in the regulation of B cell tolerance and selection, influence germinal center (GC) reactions that are directed towards foreign antigens has yet to be investigated. Here, we examined the characteristics of post-GC foreign antigen-specific B cells from SLE patients and healthy controls by analyzing monoclonal antibodies generated from plasmablasts induced specifically by influenza vaccination. We report that many of the SLE patients had anti-influenza antibodies with higher binding affinity and neutralization capacity than those from controls. Although overall frequencies of autoreactivity in the influenza-specific plasmablasts were similar for SLE patients and controls, the variable gene repertoire of influenza-specific plasmablasts from SLE patients was altered, with increased usage of JH6 and long heavy chain CDR3 segments. We found that high affinity anti-influenza antibodies generally characterize the plasmablast responses of SLE patients with low levels of autoreactivity; however, certain exceptions were noted. The high-avidity antibody responses in SLE patients may also be correlated with cytokines that are abnormally expressed in lupus. These findings provide insights into the effects of dysregulated immunity on the quality of antibody responses following influenza vaccination and further our understanding of the underlying abnormalities of lupus.
PMCID: PMC4423960  PMID: 25951191
Lupus  2014;23(4):360-369.
To examine whether smoking is associated with autoantibody production in systemic lupus erythematosus (SLE) patients, unaffected first-degree relatives (FDR) of individuals with SLE - a group at increased risk of developing SLE, or unaffected, unrelated controls.
Detailed demographic, environmental, clinical, and therapeutic information was collected by questionnaire on 1,242 SLE patients, 981 FDRs, and 946 controls in the Lupus Family Registry and Repository; a blood sample was obtained. All sera were tested for multiple lupus autoantibodies by immunofluorescence and luminex bead-based assays. Generalized estimating equations, adjusting for age, gender, and ethnicity and accounting for correlation within families, were used to assess smoking status with the dichotomous outcome variables of positivity for SLE status, positivity of ANA by immunofluorescence (≥ 1:120), positivity for ≥ 1 autoantibody by the luminex assay, and positivity for each of the 11 autoantibodies.
Current smoking was associated with being positive for ≥ 1 autoantibody (excluding ANA) (adjusted OR=1.53, 95% CI 1.04–2.24) in our subjects with SLE. No association was observed in unaffected FDRs or healthy controls. Former smoking was associated with anti-Ro/SS-A60 in our unaffected FDRs. There was an increased association with anti-nRNP A seropositivity, as well as a decreased association with anti-nRNP 68 positivity, in current smokers in SLE subjects.
No clear association between smoking status and individual autoantibodies was detected in SLE patients, unaffected FDRs, nor healthy controls within this collection. The association of smoking with SLE may therefore manifest its risk through mechanisms outside of autoantibody production, at least for the specificities tested.
PMCID: PMC3954895  PMID: 24449338
Smoking; autoantibodies; systemic lupus erythematosus
Human Molecular Genetics  2013;23(6):1656-1668.
Recent reports have associated NCF2, encoding a core component of the multi-protein NADPH oxidase (NADPHO), with systemic lupus erythematosus (SLE) susceptibility in individuals of European ancestry. To identify ethnicity-specific and -robust variants within NCF2, we assessed 145 SNPs in and around the NCF2 gene in 5325 cases and 21 866 controls of European-American (EA), African-American (AA), Hispanic (HS) and Korean (KR) ancestry. Subsequent imputation, conditional, haplotype and bioinformatic analyses identified seven potentially functional SLE-predisposing variants. Association with non-synonymous rs17849502, previously reported in EA, was detected in EA, HS and AA (PEA = 1.01 × 10−54, PHS = 3.68 × 10−10, PAA = 0.03); synonymous rs17849501 was similarly significant. These SNPs were monomorphic in KR. Novel associations were detected with coding variants at rs35937854 in AA (PAA = 1.49 × 10−9), and rs13306575 in HS and KR (PHS = 7.04 × 10−7, PKR = 3.30 × 10−3). In KR, a 3-SNP haplotype was significantly associated (P = 4.20 × 10−7), implying that SLE predisposing variants were tagged. Significant SNP–SNP interaction (P = 0.02) was detected between rs13306575 and rs17849502 in HS, and a dramatically increased risk (OR = 6.55) with a risk allele at each locus. Molecular modeling predicts that these non-synonymous mutations could disrupt NADPHO complex assembly. The risk allele of rs17849501, located in a conserved transcriptional regulatory region, increased reporter gene activity, suggesting in vivo enhancer function. Our results not only establish allelic heterogeneity within NCF2 associated with SLE, but also emphasize the utility of multi-ethnic cohorts to identify predisposing variants explaining additional phenotypic variance (‘missing heritability’) of complex diseases like SLE.
PMCID: PMC3929085  PMID: 24163247
Lupus Science & Medicine  2015;2(1):e000078.
Our purpose was to compile information on the haematological manifestations of systemic lupus erythematosus (SLE), namely leucopenia, lymphopenia, thrombocytopenia, autoimmune haemolytic anaemia (AIHA), thrombotic thrombocytopenic purpura (TTP) and myelofibrosis. During our search of the English-language MEDLINE sources, we did not place a date-of-publication constraint. Hence, we have reviewed previous as well as most recent studies with the subject heading SLE in combination with each manifestation. Neutropenia can lead to morbidity and mortality from increased susceptibility to infection. Severe neutropenia can be successfully treated with granulocyte colony-stimulating factor. While related to disease activity, there is no specific therapy for lymphopenia. Severe lymphopenia may require the use of prophylactic therapy to prevent select opportunistic infections. Isolated idiopathic thrombocytopenic purpura maybe the first manifestation of SLE by months or even years. Some manifestations of lupus occur more frequently in association with low platelet count in these patients, for example, neuropsychiatric manifestation, haemolytic anaemia, the antiphospholipid syndrome and renal disease. Thrombocytopenia can be regarded as an important prognostic indicator of survival in patients with SLE. Medical, surgical and biological treatment modalities are reviewed for this manifestation. First-line therapy remains glucocorticoids. Through our review, we conclude glucocorticoids do produce a response in majority of patients initially, but sustained response to therapy is unlikely. Glucocorticoids are used as first-line therapy in patients with SLE with AIHA, but there is no conclusive evidence to guide second-line therapy. Rituximab is promising in refractory and non-responding AIHA. TTP is not recognised as a criteria for classification of SLE, but there is a considerable overlap between the presenting features of TTP and SLE, and a few patients with SLE have concurrent TTP. Myelofibrosis is an uncommon yet well-documented manifestation of SLE. We have compiled the cases that were reported in MEDLINE sources.
PMCID: PMC4378375  PMID: 25861458
Systemic Lupus Erythematosus; Biologics; Autoantibodies
PLoS ONE  2015;10(2):e0117614.
Approximately 40% of patients who survive acute episodes of thrombotic thrombocytopenic purpura (TTP) associated with severe acquired ADAMTS13 deficiency experience one or more relapses. Risk factors for relapse other than severe ADAMTS13 deficiency and ADAMTS13 autoantibodies are unknown. ADAMTS13 autoantibodies, TTP episodes following infection or type I interferon treatment and reported ensuing systemic lupus erythematosus in some patients suggest immune dysregulation. This cross-sectional study asked whether autoantibodies against RNA-binding proteins or peripheral blood gene expression profiles measured during remission are associated with history of prior relapse in acquired ADAMTS13-deficient TTP. Peripheral blood from 38 well-characterized patients with autoimmune ADAMTS13-deficient TTP in remission was examined for autoantibodies and global gene expression. A subset of TTP patients (9 patients, 24%) exhibited a peripheral blood gene signature composed of elevated ribosomal transcripts that associated with prior relapse. A non-overlapping subset of TTP patients (9 patients, 24%) displayed a peripheral blood type I interferon gene signature that associated with autoantibodies to RNA-binding proteins but not with history of relapse. Patients who had relapsed bimodally expressed higher HLA transcript levels independently of ribosomal transcripts. Presence of any one potential risk factor (ribosomal gene signature, elevated HLA-DRB1, elevated HLA-DRB5) associated with relapse (OR = 38.4; p = 0.0002) more closely than any factor alone or all factors together. Levels of immune transcripts typical of natural killer (NK) and T lymphocytes positively correlated with ribosomal gene expression and number of prior episodes but not with time since the most recent episode. Flow cytometry confirmed elevated expression of cell surface markers encoded by these transcripts on T and/or NK cell subsets of patients who had relapsed. These data associate elevated ribosomal and immune transcripts with relapse history in acquired, ADAMTS13-deficient TTP.
PMCID: PMC4324966  PMID: 25671313

Results 1-25 (122)