PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (47)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Finished Genome of Zymomonas mobilis subsp. mobilis Strain CP4, an Applied Ethanol Producer 
Genome Announcements  2014;2(1):e00845-13.
Zymomonas mobilis subsp. mobilis is one of the most rigorous ethanol-producing organisms known to date, considered by many to be the prokaryotic alternative to yeast. The two most applied Z. mobilis subsp. mobilis strains, ZM4 and CP4, derive from Recife, Brazil, and have been isolated from sugarcane fermentations. Of these, ZM4 was the first Z. mobilis representative strain to be sequenced and analyzed. Here, we report the finishing of the genome sequence of strain CP4, which is highly similar but not identical to that of ZM4.
doi:10.1128/genomeA.00845-13
PMCID: PMC3886940  PMID: 24407627
2.  Genome sequence of Phaeobacter inhibens type strain (T5T), a secondary metabolite producing representative of the marine Roseobacter clade, and emendation of the species description of Phaeobacter inhibens 
Standards in Genomic Sciences  2013;9(2):334-350.
Strain T5T is the type strain of the species Phaeobacter inhibens Martens et al. 2006, a secondary metabolite producing bacterium affiliated to the Roseobacter clade. Strain T5T was isolated from a water sample taken at the German Wadden Sea, southern North Sea. Here we describe the complete genome sequence and annotation of this bacterium with a special focus on the secondary metabolism and compare it with the genomes of the Phaeobacter inhibens strains DSM 17395 and DSM 24588 (2.10), selected because of the close phylogenetic relationship based on the 16S rRNA gene sequences of these three strains. The genome of strain T5T comprises 4,130,897 bp with 3.923 protein-coding genes and shows high similarities in genetic and genomic characteristics compared to P. inhibens DSM 17395 and DSM 24588 (2.10). Besides the chromosome, strain T5T possesses four plasmids, three of which show a high similarity to the plasmids of the strains DSM 17395 and DSM 24588 (2.10). Analysis of the fourth plasmid suggested horizontal gene transfer. Most of the genes on this plasmid are not present in the strains DSM 17395 and DSM 24588 (2.10) including a nitrous oxide reductase, which allows strain T5T a facultative anaerobic lifestyle. The G+C content was calculated from the genome sequence and differs significantly from the previously published value, thus warranting an emendation of the species description.
doi:10.4056/sigs.4448212
PMCID: PMC4062626  PMID: 24976890
Anaerobic; motile; rod-shaped; tropodithietic acid; secondary metabolites; Rhodobacterales; Rhodobacteraceae
3.  Complete genome sequence of Enterobacter sp. IIT-BT 08: A potential microbial strain for high rate hydrogen production 
Standards in Genomic Sciences  2013;9(2):359-369.
Enterobacter sp. IIT-BT 08 belongs to Phylum: Proteobacteria, Class: Gammaproteobacteria, Order: Enterobacteriales, Family: Enterobacteriaceae. The organism was isolated from the leaves of a local plant near the Kharagpur railway station, Kharagpur, West Bengal, India. It has been extensively studied for fermentative hydrogen production because of its high hydrogen yield. For further enhancement of hydrogen production by strain development, complete genome sequence analysis was carried out. Sequence analysis revealed that the genome was linear, 4.67 Mbp long and had a GC content of 56.01%. The genome properties encode 4,393 protein-coding and 179 RNA genes. Additionally, a putative pathway of hydrogen production was suggested based on the presence of formate hydrogen lyase complex and other related genes identified in the genome. Thus, in the present study we describe the specific properties of the organism and the generation, annotation and analysis of its genome sequence as well as discuss the putative pathway of hydrogen production by this organism.
doi:10.4056/sigs.4348035
PMCID: PMC4062630  PMID: 24976892
Enterobacter sp. IIT-BT 08; genome sequence; facultative anaerobe; biohydrogen
4.  Genome sequence of the clover-nodulating Rhizobium leguminosarum bv. trifolii strain SRDI565. 
Standards in Genomic Sciences  2013;9(2):220-231.
Rhizobium leguminosarum bv. trifolii SRDI565 (syn. N8-J) is an aerobic, motile, Gram-negative, non-spore-forming rod. SRDI565 was isolated from a nodule recovered from the roots of the annual clover Trifolium subterraneum subsp. subterraneum grown in the greenhouse and inoculated with soil collected from New South Wales, Australia. SRDI565 has a broad host range for nodulation within the clover genus, however N2-fixation is sub-optimal with some Trifolium species and ineffective with others. Here we describe the features of R. leguminosarum bv. trifolii strain SRDI565, together with genome sequence information and annotation. The 6,905,599 bp high-quality-draft genome is arranged into 7 scaffolds of 7 contigs, contains 6,750 protein-coding genes and 86 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.
doi:10.4056/sigs.4468250
PMCID: PMC4062631  PMID: 24976879
root-nodule bacteria; nitrogen fixation; rhizobia; Alphaproteobacteria
5.  Permanent draft genome sequences of the symbiotic nitrogen fixing Ensifer meliloti strains BO21CC and AK58 
Standards in Genomic Sciences  2013;9(2):325-333.
Ensifer (syn. Sinorhizobium) meliloti is an important symbiotic bacterial species that fixes nitrogen. Strains BO21CC and AK58 were previously investigated for their substrate utilization and their plant-growth promoting abilities showing interesting features. Here, we describe the complete genome sequence and annotation of these strains. BO21CC and AK58 genomes are 6,985,065 and 6,974,333 bp long with 6,746 and 6,992 genes predicted, respectively.
doi:10.4056/sigs.3797438
PMCID: PMC4062632  PMID: 24976889
Aerobic; motile; Gram-negative; mesophilic; chemoorganotrophic; chemoautotrophic; soil; plant symbiont; biological nitrogen fixation; Ensifer (Sinorhizobium) meliloti; legume yield
6.  Genome sequence of the clover-nodulating Rhizobium leguminosarum bv. trifolii strain SRDI943. 
Standards in Genomic Sciences  2013;9(2):232-242.
Rhizobium leguminosarum bv. trifolii SRDI943 (strain syn. V2-2) is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Trifolium michelianum Savi cv. Paradana that had been grown in soil collected from a mixed pasture in Victoria, Australia. This isolate was found to have a broad clover host range but was sub-optimal for nitrogen fixation with T. subterraneum (fixing 20-54% of reference inoculant strain WSM1325) and was found to be totally ineffective with the clover species T. polymorphum and T. pratense. Here we describe the features of R. leguminosarum bv. trifolii strain SRDI943, together with genome sequence information and annotation. The 7,412,387 bp high-quality-draft genome is arranged into 5 scaffolds of 5 contigs, contains 7,317 protein-coding genes and 89 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.
doi:10.4056/sigs.4478252
PMCID: PMC4062636  PMID: 24976880
root-nodule bacteria; nitrogen fixation; rhizobia; Alphaproteobacteria
7.  Genome sequence of the clover-nodulating Rhizobium leguminosarum bv. trifolii strain TA1 
Standards in Genomic Sciences  2013;9(2):243-253.
Rhizobium leguminosarum bv. trifolii strain TA1 is an aerobic, motile, Gram-negative, non-spore-forming rod that is an effective nitrogen fixing microsymbiont on the perennial clovers originating from Europe and the Mediterranean basin. TA1 however is ineffective with many annual and perennial clovers originating from Africa and America. Here we describe the features of R. leguminosarum bv. trifolii strain TA1, together with genome sequence information and annotation. The 8,618,824 bp high-quality-draft genome is arranged in a 6 scaffold of 32 contigs, contains 8,493 protein-coding genes and 83 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program.
doi:10.4056/sigs.4488254
PMCID: PMC4062637  PMID: 24976881
root-nodule bacteria; nitrogen fixation; rhizobia; Alphaproteobacteria
8.  Genome sequence of the lupin-nodulating Bradyrhizobium sp. strain WSM1417 
Standards in Genomic Sciences  2013;9(2):273-282.
Bradyrhizobium sp. strain WSM1417 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen (N2) fixing root nodule of Lupinus sp. collected in Papudo, Chile, in 1995. However, this microsymbiont is a poorly effective N2 fixer with the legume host Lupinus angustifolius L.; a lupin species of considerable economic importance in both Chile and Australia. The symbiosis formed with L. angustifolius produces less than half of the dry matter achieved by the symbioses with commercial inoculant strains such as Bradyrhizobium sp. strain WSM471. Therefore, WSM1417 is an important candidate strain with which to investigate the genetics of effective N2 fixation in the lupin-bradyrhizobia symbioses. Here we describe the features of Bradyrhizobium sp. strain WSM1417, together with genome sequence information and annotation. The 8,048,963 bp high-quality-draft genome is arranged in a single scaffold of 2 contigs, contains 7,695 protein-coding genes and 77 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program.
doi:10.4056/sigs.4518260
PMCID: PMC4062640  PMID: 24976884
root-nodule bacteria; nitrogen fixation; rhizobia; Alphaproteobacteria
9.  Draft Genome Sequence and Description of Janthinobacterium sp. Strain CG3, a Psychrotolerant Antarctic Supraglacial Stream Bacterium 
Genome Announcements  2013;1(6):e00960-13.
Here we present the draft genome sequence of Janthinobacterium sp. strain CG3, a psychrotolerant non-violacein-producing bacterium that was isolated from the Cotton Glacier supraglacial stream. The genome sequence of this organism will provide insight as to the mechanisms necessary for bacteria to survive in UV-stressed icy environments.
doi:10.1128/genomeA.00960-13
PMCID: PMC3837175  PMID: 24265494
10.  Correction: Clostridium botulinum Strain Af84 Contains Three Neurotoxin Gene Clusters: Bont/A2, bont/F4 and bont/F5 
PLoS ONE  2013;8(11):10.1371/annotation/b482f80f-c5b6-4b9c-8e9b-8b7139dc37f1.
doi:10.1371/annotation/b482f80f-c5b6-4b9c-8e9b-8b7139dc37f1
PMCID: PMC3817264
11.  Genome sequence of Phaeobacter daeponensis type strain (DSM 23529T), a facultatively anaerobic bacterium isolated from marine sediment, and emendation of Phaeobacter daeponensis 
Standards in Genomic Sciences  2013;9(1):142-159.
TF-218T is the type strain of the species Phaeobacter daeponensis Yoon et al. 2007, a facultatively anaerobic Phaeobacter species isolated from tidal flats. Here we describe the draft genome sequence and annotation of this bacterium together with previously unreported aspects of its phenotype. We analyzed the genome for genes involved in secondary metabolite production and its anaerobic lifestyle, which have also been described for its closest relative Phaeobacter caeruleus. The 4,642,596 bp long genome of strain TF-218T contains 4,310 protein-coding genes and 78 RNA genes including four rRNA operons and consists of five replicons: one chromosome and four extrachromosomal elements with sizes of 276 kb, 174 kb, 117 kb and 90 kb. Genome analysis showed that TF-218T possesses all of the genes for indigoidine biosynthesis, and on specific media the strain showed a blue pigmentation. We also found genes for dissimilatory nitrate reduction, gene-transfer agents, NRPS/ PKS genes and signaling systems homologous to the LuxR/I system.
doi:10.4056/sigs.4287962
PMCID: PMC3910554  PMID: 24501652
Marine microbiology; facultative anaerobe; indigoidine; Rhodobacteraceae; Roseobacter clade
12.  Genome sequence of the moderately thermophilic sulfur-reducing bacterium Thermanaerovibrio velox type strain (Z-9701T) and emended description of the genus Thermanaerovibrio 
Standards in Genomic Sciences  2013;9(1):57-70.
Thermanaerovibrio velox Zavarzina et al. 2000 is a member of the Synergistaceae, a family in the phylum Synergistetes that is already well-characterized at the genome level. Members of this phylum were described as Gram-negative staining anaerobic bacteria with a rod/vibrioid cell shape and possessing an atypical outer cell envelope. They inhabit a large variety of anaerobic environments including soil, oil wells, wastewater treatment plants and animal gastrointestinal tracts. They are also found to be linked to sites of human diseases such as cysts, abscesses, and areas of periodontal disease. The moderately thermophilic and organotrophic T. velox shares most of its morphologic and physiologic features with the closely related species, T. acidaminovorans. In addition to Su883T, the type strain of T. acidaminovorans, stain Z-9701T is the second type strain in the genus Thermanaerovibrio to have its genome sequence published. Here we describe the features of this organism, together with the non-contiguous genome sequence and annotation. The 1,880,838 bp long chromosome (non-contiguous finished sequence) with its 1,751 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
doi:10.4056/sigs.4237901
PMCID: PMC3910556  PMID: 24501645
obligate anaerobic; motile; curved rods; organotrophic; S0-reduction; cyanobacterial mat; Synergistaceae; Synergistetes; GEBA
13.  Genome sequence of the Leisingera aquimarina type strain (DSM 24565T), a member of the marine Roseobacter clade rich in extrachromosomal elements 
Standards in Genomic Sciences  2013;8(3):389-402.
Leisingera aquimarina Vandecandelaere et al. 2008 is a member of the genomically well characterized Roseobacter clade within the family Rhodobacteraceae. Representatives of the marine Roseobacter clade are metabolically versatile and involved in carbon fixation and biogeochemical processes. They form a physiologically heterogeneous group, found predominantly in coastal or polar waters, especially in symbiosis with algae, in microbial mats, in sediments or associated with invertebrates. Here we describe the features of L. aquimarina DSM 24565T together with the permanent-draft genome sequence and annotation. The 5,344,253 bp long genome consists of one chromosome and an unusually high number of seven extrachromosomal elements and contains 5,129 protein-coding and 89 RNA genes. It was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program 2010 and of the activities of the Transregional Collaborative Research Centre 51 funded by the German Research Foundation (DFG).
doi:10.4056/sigs.3858183
PMCID: PMC3910692  PMID: 24501625
marine; biofilm; ovoid-shaped; halotolerant; heterotrophic; quorum sensing; plasmid; thiosulfate oxidation; carbon monoxide utilization; Rhodobacteraceae; Alphaproteobacteria
14.  Genome sequence of the phage-gene rich marine Phaeobacter arcticus type strain DSM 23566T 
Standards in Genomic Sciences  2013;8(3):450-464.
Phaeobacter arcticus Zhang et al. 2008 belongs to the marine Roseobacter clade whose members are phylogenetically and physiologically diverse. In contrast to the type species of this genus, Phaeobacter gallaeciensis, which is well characterized, relatively little is known about the characteristics of P. arcticus. Here, we describe the features of this organism including the annotated high-quality draft genome sequence and highlight some particular traits. The 5,049,232 bp long genome with its 4,828 protein-coding and 81 RNA genes consists of one chromosome and five extrachromosomal elements. Prophage sequences identified via PHAST constitute nearly 5% of the bacterial chromosome and included a potential Mu-like phage as well as a gene-transfer agent (GTA). In addition, the genome of strain DSM 23566T encodes all of the genes necessary for assimilatory nitrate reduction. Phylogenetic analysis and intergenomic distances indicate that the classification of the species might need to be reconsidered.
doi:10.4056/sigs.383362
PMCID: PMC3910698  PMID: 24501630
aerobic; psychrophilic; motile; high-quality draft; prophage-like structures; extrachromosomal elements; assimilatory nitrate reduction; Alphaproteobacteria; Roseobacter clade
15.  Non-contiguous finished genome sequence of plant-growth promoting Serratia proteamaculans S4 
Standards in Genomic Sciences  2013;8(3):441-449.
Serratia proteamaculans S4 (previously Serratia sp. S4), isolated from the rhizosphere of wild Equisetum sp., has the ability to stimulate plant growth and to suppress the growth of several soil-borne fungal pathogens of economically important crops. Here we present the non-contiguous, finished genome sequence of S. proteamaculans S4, which consists of a 5,324,944 bp circular chromosome and a 129,797 bp circular plasmid. The chromosome contains 5,008 predicted genes while the plasmid comprises 134 predicted genes. In total, 4,993 genes are assigned as protein-coding genes. The genome consists of 22 rRNA genes, 82 tRNA genes and 58 pseudogenes. This genome is a part of the project “Genomics of four rapeseed plant growth-promoting bacteria with antagonistic effect on plant pathogens” awarded through the 2010 DOE-JGI’s Community Sequencing Program.
doi:10.4056/sigs.4027757
PMCID: PMC3910699  PMID: 24501629
Facultative aerobe; gram-negative; motile; non-sporulating; mesophilic; chemoorganotrophic; agriculture
16.  Complete genome sequence of Dehalobacter restrictus PER-K23T 
Standards in Genomic Sciences  2013;8(3):375-388.
Dehalobacter restrictus strain PER-K23 (DSM 9455) is the type strain of the species Dehalobacter restrictus. D. restrictus strain PER-K23 grows by organohalide respiration, coupling the oxidation of H2 to the reductive dechlorination of tetra- or trichloroethene. Growth has not been observed with any other electron donor or acceptor, nor has fermentative growth been shown. Here we introduce the first full genome of a pure culture within the genus Dehalobacter. The 2,943,336 bp long genome contains 2,826 protein coding and 82 RNA genes, including 5 16S rRNA genes. Interestingly, the genome contains 25 predicted reductive dehalogenase genes, the majority of which appear to be full length. The reductive dehalogenase genes are mainly located in two clusters, suggesting a much larger potential for organohalide respiration than previously anticipated.
doi:10.4056/sigs.3787426
PMCID: PMC3910700  PMID: 24501624
Dehalobacter restrictus type strain; anaerobe; organohalide respiration; PCE; TCE; reductive dehalogenases
17.  Genome Sequence of Streptomyces viridosporus Strain T7A ATCC 39115, a Lignin-Degrading Actinomycete 
Genome Announcements  2013;1(4):e00416-13.
We announce the availability of the genome sequence of Streptomyces viridosporus strain T7A ATCC 39115, a plant biomass-degrading actinomycete. This bacterium is of special interest because of its capacity to degrade lignin, an underutilized component of plants in the context of bioenergy. It has a full complement of genes for plant biomass catabolism.
doi:10.1128/genomeA.00416-13
PMCID: PMC3703594  PMID: 23833133
18.  Draft Genome Sequence of Methylomicrobium buryatense Strain 5G, a Haloalkaline-Tolerant Methanotrophic Bacterium 
Genome Announcements  2013;1(4):e00053-13.
Robust growth of the gammaproteobacterium Methylomicrobium buryatense strain 5G on methane makes it an attractive system for CH4-based biocatalysis. Here we present a draft genome sequence of the strain that will provide a valuable framework for metabolic engineering of the core pathways for the production of valuable chemicals from methane.
doi:10.1128/genomeA.00053-13
PMCID: PMC3695433  PMID: 23814105
19.  Complete genome sequence of the halophilic bacterium Spirochaeta africana type strain (Z-7692T) from the alkaline Lake Magadi in the East African Rift 
Standards in Genomic Sciences  2013;8(2):165-176.
Spirochaeta africana Zhilina et al. 1996 is an anaerobic, aerotolerant, spiral-shaped bacterium that is motile via periplasmic flagella. The type strain of the species, Z-7692T, was isolated in 1993 or earlier from a bacterial bloom in the brine under the trona layer in a shallow lagoon of the alkaline equatorial Lake Magadi in Kenya. Here we describe the features of this organism, together with the complete genome sequence, and annotation. Considering the pending reclassification of S. caldaria to the genus Treponema, S. africana is only the second 'true' member of the genus Spirochaeta with a genome-sequenced type strain to be published. The 3,285,855 bp long genome of strain Z-7692T with its 2,817 protein-coding and 57 RNA genes is a part of the G enomic E ncyclopedia of B acteria and A rchaea project.
doi:10.4056/sigs.3607108
PMCID: PMC3746417  PMID: 23991249
anaerobic; aerotolerant; mesophilic; halophilic; spiral-shaped; motile; periplasmic flagella; Gram-negative; chemoorganotrophic; Spirochaetaceae; GEBA
20.  Complete Genome Sequence of the Thermophilic, Piezophilic, Heterotrophic Bacterium Marinitoga piezophila KA3 
Journal of Bacteriology  2012;194(21):5974-5975.
Marinitoga piezophila KA3 is a thermophilic, anaerobic, chemoorganotrophic, sulfur-reducing bacterium isolated from the Grandbonum deep-sea hydrothermal vent site at the East Pacific Rise (13°N, 2,630-m depth). The genome of M. piezophila KA3 comprises a 2,231,407-bp circular chromosome and a 13,386-bp circular plasmid. This genome was sequenced within Department of Energy Joint Genome Institute CSP 2010.
doi:10.1128/JB.01430-12
PMCID: PMC3486111  PMID: 23045491
21.  Complete Genome Sequences of Desulfosporosinus orientis DSM765T, Desulfosporosinus youngiae DSM17734T, Desulfosporosinus meridiei DSM13257T, and Desulfosporosinus acidiphilus DSM22704T 
Journal of Bacteriology  2012;194(22):6300-6301.
Desulfosporosinus species are sulfate-reducing bacteria belonging to the Firmicutes. Their genomes will give insights into the genetic repertoire and evolution of sulfate reducers typically thriving in terrestrial environments and able to degrade toluene (Desulfosporosinus youngiae), to reduce Fe(III) (Desulfosporosinus meridiei, Desulfosporosinus orientis), and to grow under acidic conditions (Desulfosporosinus acidiphilus).
doi:10.1128/JB.01392-12
PMCID: PMC3486391  PMID: 23105050
22.  Clostridium botulinum Strain Af84 Contains Three Neurotoxin Gene Clusters: Bont/A2, bont/F4 and bont/F5 
PLoS ONE  2013;8(4):e61205.
Sanger and shotgun sequencing of Clostridium botulinum strain Af84 type Af and its botulinum neurotoxin gene (bont) clusters identified the presence of three bont gene clusters rather than the expected two. The three toxin gene clusters consisted of bont subtypes A2, F4 and F5. The bont/A2 and bont/F4 gene clusters were located within the chromosome (the latter in a novel location), while the bont/F5 toxin gene cluster was located within a large 246 kb plasmid. These findings are the first identification of a C. botulinum strain that contains three botulinum neurotoxin gene clusters.
doi:10.1371/journal.pone.0061205
PMCID: PMC3625220  PMID: 23637798
23.  Draft Genome Sequence of Frankia sp. Strain QA3, a Nitrogen-Fixing Actinobacterium Isolated from the Root Nodule of Alnus nitida  
Genome Announcements  2013;1(2):e00103-13.
Members of the actinomycete genus Frankia form a nitrogen-fixing symbiosis with 8 different families of actinorhizal plants. We report a high-quality draft genome sequence for Frankia sp. strain QA3, a nitrogen-fixing actinobacterium isolated from root nodules of Alnus nitida.
doi:10.1128/genomeA.00103-13
PMCID: PMC3622976  PMID: 23516220
24.  Draft Genome Sequence of Frankia sp. Strain CN3, an Atypical, Noninfective (Nod–) Ineffective (Fix–) Isolate from Coriaria nepalensis 
Genome Announcements  2013;1(2):e00085-13.
We report here the genome sequence of Frankia sp. strain CN3, which was isolated from Coriaria nepalensis. This genome sequence is the first from the fourth lineage of Frankia, strains of which are unable to reinfect actinorhizal plants. At 10 Mb, it represents the largest Frankia genome sequenced to date.
doi:10.1128/genomeA.00085-13
PMCID: PMC3622958  PMID: 23516212
25.  Complete Genome of Serratia sp. Strain FGI 94, a Strain Associated with Leaf-Cutter Ant Fungus Gardens 
Genome Announcements  2013;1(2):e00239-12.
Serratia sp. strain FGI 94 was isolated from a fungus garden of the leaf-cutter ant Atta colombica. Analysis of its 4.86-Mbp chromosome will help advance our knowledge of symbiotic interactions and plant biomass degradation in this ancient ant-fungus mutualism.
doi:10.1128/genomeA.00239-12
PMCID: PMC3622970  PMID: 23516234

Results 1-25 (47)