Search tips
Search criteria

Results 1-20 (20)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Phylodynamic Analysis of Clinical and Environmental Vibrio cholerae Isolates from Haiti Reveals Diversification Driven by Positive Selection 
mBio  2014;5(6):e01824-14.
Phylodynamic analysis of genome-wide single-nucleotide polymorphism (SNP) data is a powerful tool to investigate underlying evolutionary processes of bacterial epidemics. The method was applied to investigate a collection of 65 clinical and environmental isolates of Vibrio cholerae from Haiti collected between 2010 and 2012. Characterization of isolates recovered from environmental samples identified a total of four toxigenic V. cholerae O1 isolates, four non-O1/O139 isolates, and a novel nontoxigenic V. cholerae O1 isolate with the classical tcpA gene. Phylogenies of strains were inferred from genome-wide SNPs using coalescent-based demographic models within a Bayesian framework. A close phylogenetic relationship between clinical and environmental toxigenic V. cholerae O1 strains was observed. As cholera spread throughout Haiti between October 2010 and August 2012, the population size initially increased and then fluctuated over time. Selection analysis along internal branches of the phylogeny showed a steady accumulation of synonymous substitutions and a progressive increase of nonsynonymous substitutions over time, suggesting diversification likely was driven by positive selection. Short-term accumulation of nonsynonymous substitutions driven by selection may have significant implications for virulence, transmission dynamics, and even vaccine efficacy.
Cholera, a dehydrating diarrheal disease caused by toxigenic strains of the bacterium Vibrio cholerae, emerged in 2010 in Haiti, a country where there were no available records on cholera over the past 100 years. While devastating in terms of morbidity and mortality, the outbreak provided a unique opportunity to study the evolutionary dynamics of V. cholerae and its environmental presence. The present study expands on previous work and provides an in-depth phylodynamic analysis inferred from genome-wide single nucleotide polymorphisms of clinical and environmental strains from dispersed geographic settings in Haiti over a 2-year period. Our results indicate that even during such a short time scale, V. cholerae in Haiti has undergone evolution and diversification driven by positive selection, which may have implications for understanding the global clinical and epidemiological patterns of the disease. Furthermore, the continued presence of the epidemic strain in Haitian aquatic environments has implications for transmission.
PMCID: PMC4278535  PMID: 25538191
2.  Population Structure of Listeria monocytogenes Serotype 4b Isolates from Sporadic Human Listeriosis Cases in the United States from 2003 to 2008 
Applied and Environmental Microbiology  2014;80(12):3632-3644.
Listeria monocytogenes can cause severe food-borne disease (listeriosis). Numerous outbreaks have involved three serotype 4b epidemic clones (ECs): ECI, ECII, and ECIa. However, little is known about the population structure of L. monocytogenes serotype 4b from sporadic listeriosis in the United States, even though most cases of human listeriosis are in fact sporadic. Here we analyzed 136 serotype 4b isolates from sporadic cases in the United States, 2003 to 2008, utilizing multiple tools including multilocus genotyping, pulsed-field gel electrophoresis, and sequence analysis of the inlAB locus. ECI, ECII, and ECIa were frequently encountered (32, 17, and 7%, respectively). However, annually 30 to 68% of isolates were outside these ECs, and several novel clonal groups were identified. An estimated 33 and 17% of the isolates, mostly among the ECs, were resistant to cadmium and arsenic, respectively, but resistance to benzalkonium chloride was uncommon (3%) among the sporadic isolates. The frequency of clonal groups fluctuated within the 6-year study period, without consistent trends. However, on several occasions, temporal clusters of isolates with indistinguishable genotypes were detected, suggesting the possibility of hidden multistate outbreaks. Our analysis suggests a complex population structure of serotype 4b L. monocytogenes from sporadic disease, with important contributions by ECs and several novel clonal groups. Continuous monitoring will be needed to assess long-term trends in clonality patterns and population structure of L. monocytogenes from sporadic listeriosis.
PMCID: PMC4054141  PMID: 24705322
3.  Genome Sequences of Vibrio navarrensis, a Potential Human Pathogen 
Genome Announcements  2014;2(6):e01188-14.
Vibrio navarrensis is an aquatic bacterium recently shown to be associated with human illness. We report the first genome sequences of three V. navarrensis strains obtained from clinical and environmental sources. Preliminary analyses of the sequences reveal that V. navarrensis contains genes commonly associated with virulence in other human pathogens.
PMCID: PMC4239357  PMID: 25414502
4.  Multidrug-Resistant IncA/C Plasmid in Vibrio cholerae from Haiti 
Emerging Infectious Diseases  2014;20(11):1951-1953.
PMCID: PMC4214316  PMID: 25340576
Vibrio cholerae; antimicrobial resistance; multidrug-resistant plasmid; bacteria; Haiti; IncA/C plasmid
5.  Draft Genome Sequence of Environmental Vibrio cholerae 2012EL-1759 with Similarities to the V. cholerae O1 Classical Biotype 
Genome Announcements  2014;2(4):e00617-14.
Vibrio cholerae 2012EL-1759 is an environmental isolate from Haiti that was recovered in 2012 during a cholera outbreak. The genomic backbone is similar to that of the prototypical V. cholerae O1 classical biotype strain O395, and it carries the Vibrio pathogenicity islands (VPI-1 and VPI-2) and a cholera toxin (CTX) prephage.
PMCID: PMC4110763  PMID: 25013135
6.  A Hybrid Approach for the Automated Finishing of Bacterial Genomes 
Nature biotechnology  2012;30(7):701-707.
Dramatic improvements in DNA sequencing technology have revolutionized our ability to characterize most genomic diversity. However, accurate resolution of large structural events has remained challenging due to the comparatively shorter read lengths of second-generation technologies. Emerging third-generation sequencing technologies, which yield markedly increased read length on rapid time scales and for low cost, have the potential to address assembly limitations. Here we combine sequencing data from second- and third-generation DNA sequencing technologies to assemble the two-chromosome genome of a recent Haitian cholera outbreak strain into two nearly finished contigs at > 99.9% accuracy. Complex regions with clinically significant structure were completely resolved. In separate control assemblies on experimental and simulated data for the canonical N16961 reference we obtain 14 and 8 scaffolds greater than 1kb, respectively, correcting several errors in the underlying source data. This work provides a blueprint for the next generation of rapid microbial identification and full-genome assembly.
PMCID: PMC3731737  PMID: 22750883
7.  Evolutionary Dynamics of Vibrio cholerae O1 following a Single-Source Introduction to Haiti 
mBio  2013;4(4):e00398-13.
Prior to the epidemic that emerged in Haiti in October of 2010, cholera had not been documented in this country. After its introduction, a strain of Vibrio cholerae O1 spread rapidly throughout Haiti, where it caused over 600,000 cases of disease and >7,500 deaths in the first two years of the epidemic. We applied whole-genome sequencing to a temporal series of V. cholerae isolates from Haiti to gain insight into the mode and tempo of evolution in this isolated population of V. cholerae O1. Phylogenetic and Bayesian analyses supported the hypothesis that all isolates in the sample set diverged from a common ancestor within a time frame that is consistent with epidemiological observations. A pangenome analysis showed nearly homogeneous genomic content, with no evidence of gene acquisition among Haiti isolates. Nine nearly closed genomes assembled from continuous-long-read data showed evidence of genome rearrangements and supported the observation of no gene acquisition among isolates. Thus, intrinsic mutational processes can account for virtually all of the observed genetic polymorphism, with no demonstrable contribution from horizontal gene transfer (HGT). Consistent with this, the 12 Haiti isolates tested by laboratory HGT assays were severely impaired for transformation, although unlike previously characterized noncompetent V. cholerae isolates, each expressed hapR and possessed a functional quorum-sensing system. Continued monitoring of V. cholerae in Haiti will illuminate the processes influencing the origin and fate of genome variants, which will facilitate interpretation of genetic variation in future epidemics.
Vibrio cholerae is the cause of substantial morbidity and mortality worldwide, with over three million cases of disease each year. An understanding of the mode and rate of evolutionary change is critical for proper interpretation of genome sequence data and attribution of outbreak sources. The Haiti epidemic provides an unprecedented opportunity to study an isolated, single-source outbreak of Vibrio cholerae O1 over an established time frame. By using multiple approaches to assay genetic variation, we found no evidence that the Haiti strain has acquired any genes by horizontal gene transfer, an observation that led us to discover that it is also poorly transformable. We have found no evidence that environmental strains have played a role in the evolution of the outbreak strain.
PMCID: PMC3705451  PMID: 23820394
8.  Novel Epidemic Clones of Listeria monocytogenes, United States, 2011 
Emerging Infectious Diseases  2013;19(1):147-150.
We identified a novel serotype 1/2a outbreak strain and 2 novel epidemic clones of Listeria monocytogenes while investigating a foodborne outbreak of listeriosis associated with consumption of cantaloupe during 2011 in the United States. Comparative analyses of strains worldwide are essential to identification of novel outbreak strains and epidemic clones.
PMCID: PMC3558006  PMID: 23260778
Listeria monocytogenes; cantaloupe; United States; novel outbreak strain; novel epidemic clones; mixed-serotype biofilms; bacteria; foodborne infections
9.  Genomic Comparison of Escherichia coli O104:H4 Isolates from 2009 and 2011 Reveals Plasmid, and Prophage Heterogeneity, Including Shiga Toxin Encoding Phage stx2 
PLoS ONE  2012;7(11):e48228.
In May of 2011, an enteroaggregative Escherichia coli O104:H4 strain that had acquired a Shiga toxin 2-converting phage caused a large outbreak of bloody diarrhea in Europe which was notable for its high prevalence of hemolytic uremic syndrome cases. Several studies have described the genomic inventory and phylogenies of strains associated with the outbreak and a collection of historical E. coli O104:H4 isolates using draft genome assemblies. We present the complete, closed genome sequences of an isolate from the 2011 outbreak (2011C–3493) and two isolates from cases of bloody diarrhea that occurred in the Republic of Georgia in 2009 (2009EL–2050 and 2009EL–2071). Comparative genome analysis indicates that, while the Georgian strains are the nearest neighbors to the 2011 outbreak isolates sequenced to date, structural and nucleotide-level differences are evident in the Stx2 phage genomes, the mer/tet antibiotic resistance island, and in the prophage and plasmid profiles of the strains, including a previously undescribed plasmid with homology to the pMT virulence plasmid of Yersinia pestis. In addition, multiphenotype analysis showed that 2009EL–2071 possessed higher resistance to polymyxin and membrane-disrupting agents. Finally, we show evidence by electron microscopy of the presence of a common phage morphotype among the European and Georgian strains and a second phage morphotype among the Georgian strains. The presence of at least two stx2 phage genotypes in host genetic backgrounds that may derive from a recent common ancestor of the 2011 outbreak isolates indicates that the emergence of stx2 phage-containing E. coli O104:H4 strains probably occurred more than once, or that the current outbreak isolates may be the result of a recent transfer of a new stx2 phage element into a pre-existing stx2-positive genetic background.
PMCID: PMC3486847  PMID: 23133618
10.  Genomic Characterization of Listeria monocytogenes Strains Involved in a Multistate Listeriosis Outbreak Associated with Cantaloupe in US 
PLoS ONE  2012;7(7):e42448.
A multistate listeriosis outbreak associated with cantaloupe consumption was reported in the United States in September, 2011. The outbreak investigation recorded a total of 146 invasive illnesses, 30 deaths and one miscarriage. Subtyping of the outbreak associated clinical, food and environmental isolates revealed two serotypes (1/2a and 1/2b) and four pulsed-field gel electrophoresis two-enzyme pattern combinations I, II, III, and IV, including one rarely seen before this outbreak. A DNA-microarray, Listeria GeneChip®, developed by FDA from 24 Listeria monocytogenes genome sequences, was used to further characterize a representative sample of the outbreak isolates. The microarray data (in the form of present or absent calls of specific DNA sequences) separated the isolates into two distinct groups as per their serotypes. The gene content of the outbreak-associated isolates was distinct from that of the previously-reported outbreak strains belonging to the same serotypes. Although the 1/2b outbreak associated isolates are closely related to each other, the 1/2a isolates could be further divided into two distinct genomic groups, one represented by pattern combination I strains and the other represented by highly similar pattern combinations III and IV strains. Gene content analysis of these groups revealed unique genomic sequences associated with these two 1/2a genovars. This work underscores the utility of multiple approaches, such as serotyping, PFGE and DNA microarray analysis to characterize the composition of complex polyclonal listeriosis outbreaks.
PMCID: PMC3409164  PMID: 22860127
11.  Vibrio furnissii: an Unusual Cause of Bacteremia and Skin Lesions after Ingestion of Seafood▿† 
Journal of Clinical Microbiology  2011;49(6):2348-2349.
Vibrio furnissii in the blood is rarely reported, which may explain why clinical features of bloodstream infections with this organism have not been described. We describe a patient who developed skin lesions and V. furnissii bacteremia and was successfully treated with fluoroquinolones. V. furnissii may be a serious pathogen in patients with underlying comorbidities who are exposed to seafood.
PMCID: PMC3122773  PMID: 21450956
12.  Toxigenic Vibrio cholerae O1 in Water and Seafood, Haiti 
Emerging Infectious Diseases  2011;17(11):2147-2150.
During the 2010 cholera outbreak in Haiti, water and seafood samples were collected to detect Vibrio cholerae. The outbreak strain of toxigenic V. cholerae O1 serotype Ogawa was isolated from freshwater and seafood samples. The cholera toxin gene was detected in harbor water samples.
PMCID: PMC3310574  PMID: 22099121
Vibrio cholerae; cholera; drinking water; seafood safety; ultrafiltration
13.  Comparative Genomics of Vibrio cholerae from Haiti, Asia, and Africa 
Emerging Infectious Diseases  2011;17(11):2113-2121.
A strain from Haiti shares genetic ancestry with those from Asia and Africa.
Cholera was absent from the island of Hispaniola at least a century before an outbreak that began in Haiti in the fall of 2010. Pulsed-field gel electrophoresis (PFGE) analysis of clinical isolates from the Haiti outbreak and recent global travelers returning to the United States showed indistinguishable PFGE fingerprints. To better explore the genetic ancestry of the Haiti outbreak strain, we acquired 23 whole-genome Vibrio cholerae sequences: 9 isolates obtained in Haiti or the Dominican Republic, 12 PFGE pattern-matched isolates linked to Asia or Africa, and 2 nonmatched outliers from the Western Hemisphere. Phylogenies for whole-genome sequences and core genome single-nucleotide polymorphisms showed that the Haiti outbreak strain is genetically related to strains originating in India and Cameroon. However, because no identical genetic match was found among sequenced contemporary isolates, a definitive genetic origin for the outbreak in Haiti remains speculative.
PMCID: PMC3310578  PMID: 22099115
Vibrio cholerae; cholera; bacteria; genomics; whole-genome sequencing; public health; outbreak; epidemiology; Haiti; Asia; Africa; travel
14.  Characterization of Toxigenic Vibrio cholerae from Haiti, 2010–2011 
Emerging Infectious Diseases  2011;17(11):2122-2129.
A virulent clone from Africa or southern Asia was likely introduced at a single time point.
In October 2010, the US Centers for Disease Control and Prevention received reports of cases of severe watery diarrhea in Haiti. The cause was confirmed to be toxigenic Vibrio cholerae, serogroup O1, serotype Ogawa, biotype El Tor. We characterized 122 isolates from Haiti and compared them with isolates from other countries. Antimicrobial drug susceptibility was tested by disk diffusion and broth microdilution. Analyses included identification of rstR and VC2346 genes, sequencing of ctxAB and tcpA genes, and pulsed-field gel electrophoresis with SfiI and NotI enzymes. All isolates were susceptible to doxycycline and azithromycin. One pulsed-field gel electrophoresis pattern predominated, and ctxB sequence of all isolates matched the B-7 allele. We identified the tcpETCIRS allele, which is also present in Bangladesh strain CIRS 101. These data show that the isolates from Haiti are clonally and genetically similar to isolates originating in Africa and southern Asia and that ctxB-7 and tcpETCIRS alleles are undergoing global dissemination.
PMCID: PMC3310580  PMID: 22099116
Vibrio cholerae; Vibrio cholerae O1; bacteria; disease outbreaks; Haiti; public health; diarrhea; cholera; cholera toxin; epidemics
15.  Local Mobile Gene Pools Rapidly Cross Species Boundaries To Create Endemicity within Global Vibrio cholerae Populations 
mBio  2011;2(2):e00335-10.
Vibrio cholerae represents both an environmental pathogen and a widely distributed microbial species comprised of closely related strains occurring in the tropical to temperate coastal ocean across the globe (Colwell RR, Science 274:2025–2031, 1996; Griffith DC, Kelly-Hope LA, Miller MA, Am. J. Trop. Med. Hyg. 75:973–977, 2006; Reidl J, Klose KE, FEMS Microbiol. Rev. 26:125–139, 2002). However, although this implies dispersal and growth across diverse environmental conditions, how locally successful populations assemble from a possibly global gene pool, relatively unhindered by geographic boundaries, remains poorly understood. Here, we show that environmental Vibrio cholerae possesses two, largely distinct gene pools: one is vertically inherited and globally well mixed, and the other is local and rapidly transferred across species boundaries to generate an endemic population structure. While phylogeographic analysis of isolates collected from Bangladesh and the U.S. east coast suggested strong panmixis for protein-coding genes, there was geographic structure in integrons, which are the only genomic islands present in all strains of V. cholerae (Chun J, et al., Proc. Natl. Acad. Sci. U. S. A. 106:15442–15447, 2009) and are capable of acquiring and expressing mobile gene cassettes. Geographic differentiation in integrons arises from high gene turnover, with acquisition from a locally cooccurring sister species being up to twice as likely as exchange with conspecific but geographically distant V. cholerae populations.
Functional predictions of integron genes show the predominance of secondary metabolism and cell surface modification, which is consistent with a role in competition and predation defense. We suggest that the integron gene pool’s distinctness and tempo of sharing are adaptive in allowing rapid conversion of genomes to reflect local ecological constraints. Because the integron is frequently the main element differentiating clinical strains (Chun J, et al., Proc. Natl. Acad. Sci. U. S. A. 106:15442–15447, 2009) and its recombinogenic activity is directly stimulated by environmental stresses (Guerin E, et al., Science 324:1034, 2009), these observations are relevant for local emergence and subsequent dispersal.
PMCID: PMC3073641  PMID: 21486909
16.  Molecular Characterization Reveals Similar Virulence Gene Content in Unrelated Clonal Groups of Escherichia coli of Serogroup O174 (OX3)▿  
Journal of Bacteriology  2007;190(4):1344-1349.
Most severe illnesses that are attributed to Shiga toxin-producing Escherichia coli are caused by isolates that also carry a pathogenicity island called the locus of enterocyte effacement (LEE). However, many cases of severe disease are associated with LEE-negative strains. We characterized the virulence gene content and the evolutionary relationships of Escherichia coli isolates of serogroup O174 (formerly OX3), strains of which have been implicated in cases of hemorrhagic colitis and hemolytic uremic syndrome. A total of 56 isolates from humans, farm animals, and food were subjected to multilocus virulence gene profiling (MVGP), and a subset of 16 isolates was subjected to multilocus sequence analysis (MLSA). The MLSA revealed that the O174 isolates fall into four separate evolutionary clusters within the E. coli phylogeny and are related to a diverse array of clonal groups, including enteropathogenic E. coli 2 (EPEC 2), enterohemorrhagic E. coli 2 (EHEC 2), and EHEC-O121. Of the 15 genes that we surveyed with MVGP, only 6 are common in the O174 strains. The different clonal groups within the O174 serogroup appear to have independently acquired and maintained similar sets of genes that include the Shiga toxins (stx1 and stx2) and two adhesins (saa and iha). The absence of certain O island (OI) genes, such as those found on OI-122, is consistent with the notion that certain pathogenicity islands act cooperatively with the LEE island.
PMCID: PMC2238209  PMID: 18083801
17.  Identification of Vibrio Isolates by a Multiplex PCR Assay and rpoB Sequence Determination▿  
Journal of Clinical Microbiology  2006;45(1):134-140.
Vibrio, a diverse genus of aquatic bacteria, currently includes 72 species, 12 of which occur in human clinical samples. Of these 12, three species—Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus—account for the majority of Vibrio infections in humans. Rapid and accurate identification of Vibrio species has been problematic because phenotypic characteristics are variable within species and biochemical identification requires 2 or more days to complete. To facilitate the identification of human-pathogenic species, we developed a multiplex PCR that uses species-specific primers to amplify gene regions in four species (V. cholerae, V. parahaemolyticus, V. vulnificus, and V. mimicus). The assay was tested on a sample of 309 Vibrio isolates representing 26 named species (including 12 human pathogens) that had been characterized by biochemical methods. A total of 190 isolates that had been identified as one of the four target species all yielded results consistent with the previous classification. The assay identified an additional four V. parahaemolyticus isolates among the other 119 isolates. Sequence analysis based on rpoB was used to validate the multiplex results for these four isolates, and all clustered with other V. parahaemolyticus sequences. The rpoB sequences for 12 of 15 previously unidentified isolates clustered with other Vibrio species in a phylogenetic analysis, and three isolates appeared to represent unnamed Vibrio species. The PCR assay provides a simple, rapid, and reliable tool for identification of the major Vibrio pathogens in clinical samples, and rpoB sequencing provides an additional identification tool for other species in the genus Vibrio.
PMCID: PMC1828960  PMID: 17093013
18.  First Case of Septicemia Due to a Strain Belonging to Enteric Group 58 (Enterobacteriaceae) and Its Designation as Averyella dalhousiensis gen. nov., sp. nov., Based on Analysis of Strains from 20 Additional Cases 
Journal of Clinical Microbiology  2005;43(10):5195-5201.
When enteric group 58 was first described as a distinct new group of Enterobacteriaceae in 1985, there were only five known human isolates: four from wounds and one from feces. In 1996, we investigated the first blood isolate of enteric group 58, a case of sepsis in a 33-year-old woman receiving total parenteral nutrition. Fifteen additional clinical isolates have since been identified at CDC, including several recognized from a collection of “unidentified” strains dating back to 1973. All strains were characterized with a standard set of 49 biochemical tests used for Enterobacteriaceae, and the results were analyzed to determine phenotypic relatedness and best taxonomic fit. Antibiograms were determined as a taxonomic tool. Original identifications provided by submitting laboratories encompassed a wide variety of Enterobacteriaceae, including 14 species in eight genera, the most common being Enterobacter spp., Salmonella spp., Serratia spp., Kluyvera spp., or Escherichia spp. Enteric group 58 strains have been most frequently isolated from traumatic injuries, fractures, and wounds and rarely from feces. Defining its clinical significance and distinguishing infection from colonization requires further study, but our case report indicates that serious systemic infection can occur. The vernacular name enteric group 58 was used from 1985 to 2004. In this paper, we formally name it Averyella dalhousiensis gen. nov., sp. nov., on the basis of its unique phenotype and its unique 16S rRNA gene sequence. These data indicate that enteric group 58 is not closely related to any of the existing genera or species of Enterobacteriaceae. The type strain is designated CDC9501-97, and a phenotypic definition is given based on all 21 strains.
PMCID: PMC1248483  PMID: 16207983
19.  Molecular Characterization of a Serotype O121:H19 Clone, a Distinct Shiga Toxin-Producing Clone of Pathogenic Escherichia coli  
Infection and Immunity  2002;70(12):6853-6859.
Most illnesses caused by Shiga toxin-producing Escherichia coli (STEC) have been attributed to E. coli serotype O157:H7, but non-O157 STEC infections are now increasingly recognized as public health problems worldwide. The O121:H19 serotype is being isolated more frequently from clinical specimens and has been implicated in one waterborne outbreak. We used multilocus virulence gene profiling, a PCR-based assay, to characterize the virulence gene content of 24 isolates of serotype O121:H19 and nonmotile variants. We also performed multilocus enzyme electrophoresis and multilocus sequencing to establish the clonal relatedness of O121 isolates and to elucidate the relationship of O121 to common STEC clones. The 24 isolates were found to represent a single bacterial clone, as there was no allelic variation across 18 enzyme loci among the isolates. The complete nucleotide sequence of the intimin gene differed by four substitutions from that of the epsilon (Int-ɛ) allele of O103:H2 strain PMK5. The typical O121 virulence gene profile was similar to the profiles of enterohemorrhagic E. coli (EHEC) clones of E. coli: it included a Shiga toxin 2 gene (stx2), two genes on the EHEC plasmid (toxB and ehxA), and the gene encoding intimin (eae). Despite the similarities, putative virulence genes distributed on O islands—large chromosomal DNA segments present in the O157:H7 genome—were useful for discriminating among STEC serotypes and the O121:H19 clone had a composite profile that was distinct from the profiles of the other major EHEC clones of pathogenic E. coli. On the basis of sequencing analysis with 13 housekeeping genes, the O121:H19 clone did not fall into any of the four classical EHEC and enteropathogenic E. coli groups but instead was closely related to two eae-negative STEC strains.
PMCID: PMC133070  PMID: 12438362
20.  Molecular Evolution of the Intimin Gene in O111 Clones of Pathogenic Escherichia coli 
Journal of Bacteriology  2002;184(2):479-487.
Intimin is an important virulence factor in two groups of enteric pathogens: enteropathogenic Escherichia coli (EPEC), which is a major cause of infant diarrhea in the developing world, and enterohemorrhagic E. coli (EHEC), which has caused large food-borne outbreaks of hemorrhagic colitis in the United States and other developed countries. Intimin is encoded on a 35-kb pathogenicity island called the locus of enterocyte effacement (LEE). At least five antigenic types have been described for the highly variable gene, and each type is generally characteristic of particular evolutionary lineages. We determined the nucleotide sequences of intimin and other LEE genes in two O111 clones that have not been amenable to typing. The sequences from both O111:H8 and O111:H9 differed from the Int-β that is typical of other clones in the same evolutionary lineage. The sequence from the O111:H8 strains was a mosaic of divergent segments that alternately clustered with Int-α, Int-β, or Int-γ. The sequence from the O111:H9 clone consistently showed a close relationship with that from E2348/69, a distantly related strain that expresses Int-α. The results suggest that there have been multiple acquisitions of the LEE in the EHEC 2/EPEC 2 clonal lineage, with a recent turnover in either O111:H8 or its close relatives. Amino acid substitutions that alter residue charge occurred more frequently than would be expected under random substitution in the extracellular domains of intimin, suggesting that diversifying selection has promoted divergence in this region of the protein. An N-terminal domain that presumably functions in the periplasm may also be under positive selection.
PMCID: PMC139570  PMID: 11751825

Results 1-20 (20)