Search tips
Search criteria

Results 1-17 (17)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Molecular Dissection of Induced Platinum Resistance through Functional and Gene Expression Analysis in a Cell Culture Model of Bladder Cancer 
PLoS ONE  2016;11(1):e0146256.
We report herein the development, functional and molecular characterization of an isogenic, paired bladder cancer cell culture model system for studying platinum drug resistance. The 5637 human bladder cancer cell line was cultured over ten months with stepwise increases in oxaliplatin concentration to generate a drug resistant 5637R sub cell line. The MTT assay was used to measure the cytotoxicity of several bladder cancer drugs. Liquid scintillation counting allowed quantification of cellular drug uptake and efflux of radiolabeled oxaliplatin and carboplatin. The impact of intracellular drug inactivation was assessed by chemical modulation of glutathione levels. Oxaliplatin- and carboplatin-DNA adduct formation and repair was measured using accelerator mass spectrometry. Resistance factors including apoptosis, growth factor signaling and others were assessed with RNAseq of both cell lines and included confirmation of selected transcripts by RT-PCR. Oxaliplatin, carboplatin, cisplatin and gemcitabine were significantly less cytotoxic to 5637R cells compared to the 5637 cells. In contrast, doxorubicin, methotrexate and vinblastine had no cell line dependent difference in cytotoxicity. Upon exposure to therapeutically relevant doses of oxaliplatin, 5637R cells had lower drug-DNA adduct levels than 5637 cells. This difference was partially accounted for by pre-DNA damage mechanisms such as drug uptake and intracellular inactivation by glutathione, as well as faster oxaliplatin-DNA adduct repair. In contrast, both cell lines had no significant differences in carboplatin cell uptake, efflux and drug-DNA adduct formation and repair, suggesting distinct resistance mechanisms for these two closely related drugs. The functional studies were augmented by RNAseq analysis, which demonstrated a significant change in expression of 83 transcripts, including 50 known genes and 22 novel transcripts. Most of the transcripts were not previously associated with bladder cancer chemoresistance. This model system and the associated phenotypic and genotypic data has the potential to identify some novel details of resistance mechanisms of clinical importance to bladder cancer.
PMCID: PMC4723083  PMID: 26799320
2.  Genome Sequence of a Chromium-Reducing Strain, Bacillus cereus S612 
Genome Announcements  2015;3(6):e01392-15.
We report here the genome sequence of an effective chromium-reducing bacterium, Bacillus cereus strain S612. The size of the draft genome sequence is approximately 5.4 Mb, with a G+C content of 35%, and it is predicted to contain 5,450 protein-coding genes.
PMCID: PMC4675937  PMID: 26659672
3.  Genome Sequence of Aeribacillus pallidus Strain GS3372, an Endospore-Forming Bacterium Isolated in a Deep Geothermal Reservoir 
Genome Announcements  2015;3(4):e00981-15.
The genome of strain GS3372 is the first publicly available strain of Aeribacillus pallidus. This endospore-forming thermophilic strain was isolated from a deep geothermal reservoir. The availability of this genome can contribute to the clarification of the taxonomy of the closely related Anoxybacillus, Geobacillus, and Aeribacillus genera.
PMCID: PMC4551881  PMID: 26316637
4.  Genome Sequence of Bacillus alveayuensis Strain 24KAM51, a Halotolerant Thermophile Isolated from a Hydrothermal Vent 
Genome Announcements  2015;3(4):e00982-15.
Bacillus alveayuensis strain 24KAM51 was isolated from a marine hydrothermal vent in Milos, Greece. Its genome depicts interesting features of halotolerance and resistance to heavy metals.
PMCID: PMC4551882  PMID: 26316638
5.  Genome Sequence of Anoxybacillus geothermalis Strain GSsed3, a Novel Thermophilic Endospore-Forming Species 
Genome Announcements  2015;3(3):e00575-15.
Anoxybacillus geothermalis strain GSsed3 is an endospore-forming thermophilic bacterium isolated from filter deposits in a geothermal site. This novel species has a larger genome size (7.2 Mb) than that of any other Anoxybacillus species, and it possesses genes that support its phenotypic metabolic characterization and suggest an intriguing link to metals.
PMCID: PMC4463517  PMID: 26067952
6.  Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests 
Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 74,000 carbohydrate active enzyme transcript sequences (CAZymes) in each metatranscriptome. Parallel ribosomal RNA (rRNA) surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact.
PMCID: PMC4407611  PMID: 25954263
metatranscriptomics; nitrogen deposition; soil fungal community; soil bacterial community; carbohydrate active enzymes; soil RNA
7.  Draft Genome Sequence of Thauera sp. Strain SWB20, Isolated from a Singapore Wastewater Treatment Facility Using Gel Microdroplets 
Genome Announcements  2015;3(2):e00132-15.
We report here the genome sequence of Thauera sp. strain SWB20, isolated from a Singaporean wastewater treatment facility using gel microdroplets (GMDs) and single-cell genomics (SCG). This approach provided a single clonal microcolony that was sufficient to obtain a 4.9-Mbp genome assembly of an ecologically relevant Thauera species.
PMCID: PMC4395064  PMID: 25792053
8.  Draft Genome Sequence of Enterobacter cloacae Strain S611 
Genome Announcements  2014;2(6):e00710-14.
We report draft genomes of Enterobacter cloacae strain S611, an endophytic bacterium isolated from surface-sterilized germinating wheat seeds. We present the assembly and annotation of its genome, which may provide insights into the metabolic pathways involved in adaptation.
PMCID: PMC4263822  PMID: 25502660
9.  Facile, High Quality Sequencing of Bacterial Genomes from Small Amounts of DNA 
Sequencing bacterial genomes has traditionally required large amounts of genomic DNA (~1 μg). There have been few studies to determine the effects of the input DNA amount or library preparation method on the quality of sequencing data. Several new commercially available library preparation methods enable shotgun sequencing from as little as 1 ng of input DNA. In this study, we evaluated the NEBNext Ultra library preparation reagents for sequencing bacterial genomes. We have evaluated the utility of NEBNext Ultra for resequencing and de novo assembly of four bacterial genomes and compared its performance with the TruSeq library preparation kit. The NEBNext Ultra reagents enable high quality resequencing and de novo assembly of a variety of bacterial genomes when using 100 ng of input genomic DNA. For the two most challenging genomes (Burkholderia spp.), which have the highest GC content and are the longest, we also show that the quality of both resequencing and de novo assembly is not decreased when only 10 ng of input genomic DNA is used.
PMCID: PMC4247979  PMID: 25478564
10.  Draft Genome Sequence of Pseudomonas putida Strain S610, a Seed-Borne Bacterium of Wheat 
Genome Announcements  2013;1(6):e01048-13.
We report the genome sequence of a seed-borne bacterium, Pseudomonas putida strain S610. The size of the draft genome sequence is approximately 4.6 Mb, which is the smallest among all P. putida strains sequenced to date.
PMCID: PMC3873609  PMID: 24371199
11.  The antibody mining toolbox 
mAbs  2013;6(1):160-172.
In vitro selection has been an essential tool in the development of recombinant antibodies against various antigen targets. Deep sequencing has recently been gaining ground as an alternative and valuable method to analyze such antibody selections. The analysis provides a novel and extremely detailed view of selected antibody populations, and allows the identification of specific antibodies using only sequencing data, potentially eliminating the need for expensive and laborious low-throughput screening methods such as enzyme-linked immunosorbant assay. The high cost and the need for bioinformatics experts and powerful computer clusters, however, have limited the general use of deep sequencing in antibody selections. Here, we describe the AbMining ToolBox, an open source software package for the straightforward analysis of antibody libraries sequenced by the three main next generation sequencing platforms (454, Ion Torrent, MiSeq). The ToolBox is able to identify heavy chain CDR3s as effectively as more computationally intense software, and can be easily adapted to analyze other portions of antibody variable genes, as well as the selection outputs of libraries based on different scaffolds. The software runs on all common operating systems (Microsoft Windows, Mac OS X, Linux), on standard personal computers, and sequence analysis of 1–2 million reads can be accomplished in 10–15 min, a fraction of the time of competing software. Use of the ToolBox will allow the average researcher to incorporate deep sequence analysis into routine selections from antibody display libraries.
PMCID: PMC3929439  PMID: 24423623
HCDR3; antibody library; deep sequencing; regular expression; AbMining ToolBox
12.  A multiple-alignment based primer design algorithm for genetically highly variable DNA targets 
BMC Bioinformatics  2013;14:255.
Primer design for highly variable DNA sequences is difficult, and experimental success requires attention to many interacting constraints. The advent of next-generation sequencing methods allows the investigation of rare variants otherwise hidden deep in large populations, but requires attention to population diversity and primer localization in relatively conserved regions, in addition to recognized constraints typically considered in primer design.
Design constraints include degenerate sites to maximize population coverage, matching of melting temperatures, optimizing de novo sequence length, finding optimal bio-barcodes to allow efficient downstream analyses, and minimizing risk of dimerization. To facilitate primer design addressing these and other constraints, we created a novel computer program (PrimerDesign) that automates this complex procedure. We show its powers and limitations and give examples of successful designs for the analysis of HIV-1 populations.
PrimerDesign is useful for researchers who want to design DNA primers and probes for analyzing highly variable DNA populations. It can be used to design primers for PCR, RT-PCR, Sanger sequencing, next-generation sequencing, and other experimental protocols targeting highly variable DNA samples.
PMCID: PMC3765731  PMID: 23965160
Primer design; DNA sequencing; Amplicon sequencing; Next-generation sequencing; PCR; Primer dimer; Bio-barcodes; Multiplex
13.  Complete genome sequence of Halorhodospira halophila SL1 
Standards in Genomic Sciences  2013;8(2):206-214.
Halorhodospira halophila is among the most halophilic organisms known. It is an obligately photosynthetic and anaerobic purple sulfur bacterium that exhibits autotrophic growth up to saturated NaCl concentrations. The type strain H. halophila SL1 was isolated from a hypersaline lake in Oregon. Here we report the determination of its entire genome in a single contig. This is the first genome of a phototrophic extreme halophile. The genome consists of 2,678,452 bp, encoding 2,493 predicted genes as determined by automated genome annotation. Of the 2,407 predicted proteins, 1,905 were assigned to a putative function. Future detailed analysis of this genome promises to yield insights into the halophilic adaptations of this organism, its ability for photoautotrophic growth under extreme conditions, and its characteristic sulfur metabolism.
PMCID: PMC3746430  PMID: 23991253
halophile; saturated salt; sulfur metabolism; purple sulfur bacterium; phototrophic
14.  Genomic Comparison of Escherichia coli O104:H4 Isolates from 2009 and 2011 Reveals Plasmid, and Prophage Heterogeneity, Including Shiga Toxin Encoding Phage stx2 
PLoS ONE  2012;7(11):e48228.
In May of 2011, an enteroaggregative Escherichia coli O104:H4 strain that had acquired a Shiga toxin 2-converting phage caused a large outbreak of bloody diarrhea in Europe which was notable for its high prevalence of hemolytic uremic syndrome cases. Several studies have described the genomic inventory and phylogenies of strains associated with the outbreak and a collection of historical E. coli O104:H4 isolates using draft genome assemblies. We present the complete, closed genome sequences of an isolate from the 2011 outbreak (2011C–3493) and two isolates from cases of bloody diarrhea that occurred in the Republic of Georgia in 2009 (2009EL–2050 and 2009EL–2071). Comparative genome analysis indicates that, while the Georgian strains are the nearest neighbors to the 2011 outbreak isolates sequenced to date, structural and nucleotide-level differences are evident in the Stx2 phage genomes, the mer/tet antibiotic resistance island, and in the prophage and plasmid profiles of the strains, including a previously undescribed plasmid with homology to the pMT virulence plasmid of Yersinia pestis. In addition, multiphenotype analysis showed that 2009EL–2071 possessed higher resistance to polymyxin and membrane-disrupting agents. Finally, we show evidence by electron microscopy of the presence of a common phage morphotype among the European and Georgian strains and a second phage morphotype among the Georgian strains. The presence of at least two stx2 phage genotypes in host genetic backgrounds that may derive from a recent common ancestor of the 2011 outbreak isolates indicates that the emergence of stx2 phage-containing E. coli O104:H4 strains probably occurred more than once, or that the current outbreak isolates may be the result of a recent transfer of a new stx2 phage element into a pre-existing stx2-positive genetic background.
PMCID: PMC3486847  PMID: 23133618
15.  Capturing Single Cell Genomes of Active Polysaccharide Degraders: An Unexpected Contribution of Verrucomicrobia 
PLoS ONE  2012;7(4):e35314.
Microbial hydrolysis of polysaccharides is critical to ecosystem functioning and is of great interest in diverse biotechnological applications, such as biofuel production and bioremediation. Here we demonstrate the use of a new, efficient approach to recover genomes of active polysaccharide degraders from natural, complex microbial assemblages, using a combination of fluorescently labeled substrates, fluorescence-activated cell sorting, and single cell genomics. We employed this approach to analyze freshwater and coastal bacterioplankton for degraders of laminarin and xylan, two of the most abundant storage and structural polysaccharides in nature. Our results suggest that a few phylotypes of Verrucomicrobia make a considerable contribution to polysaccharide degradation, although they constituted only a minor fraction of the total microbial community. Genomic sequencing of five cells, representing the most predominant, polysaccharide-active Verrucomicrobia phylotype, revealed significant enrichment in genes encoding a wide spectrum of glycoside hydrolases, sulfatases, peptidases, carbohydrate lyases and esterases, confirming that these organisms were well equipped for the hydrolysis of diverse polysaccharides. Remarkably, this enrichment was on average higher than in the sequenced representatives of Bacteroidetes, which are frequently regarded as highly efficient biopolymer degraders. These findings shed light on the ecological roles of uncultured Verrucomicrobia and suggest specific taxa as promising bioprospecting targets. The employed method offers a powerful tool to rapidly identify and recover discrete genomes of active players in polysaccharide degradation, without the need for cultivation.
PMCID: PMC3335022  PMID: 22536372
16.  Epitope-Specific CD8+ T Lymphocytes Cross-Recognize Mutant Simian Immunodeficiency Virus (SIV) Sequences but Fail To Contain Very Early Evolution and Eventual Fixation of Epitope Escape Mutations during SIV Infection ▿ †  
Journal of Virology  2011;85(8):3746-3757.
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) evade containment by CD8+ T lymphocytes through focused epitope mutations. However, because of limitations in the numbers of viral sequences that can be sampled, traditional sequencing technologies have not provided a true representation of the plasticity of these viruses or the intensity of CD8+ T lymphocyte-mediated selection pressure. Moreover, the strategy by which CD8+ T lymphocytes contain evolving viral quasispecies has not been characterized fully. In the present study we have employed ultradeep 454 pyrosequencing of virus and simultaneous staining of CD8+ T lymphocytes with multiple tetramers in the SIV/rhesus monkey model to explore the coevolution of virus and the cellular immune response during primary infection. We demonstrated that cytotoxic T lymphocyte (CTL)-mediated selection pressure on the infecting virus was manifested by epitope mutations as early as 21 days following infection. We also showed that CD8+ T lymphocytes cross-recognized wild-type and mutant epitopes and that these cross-reactive cell populations were present at a time when mutant forms of virus were present at frequencies of as low as 1 in 22,000 sequenced clones. Surprisingly, these cross-reactive cells became enriched in the epitope-specific CD8+ T lymphocyte population as viruses with mutant epitope sequences largely replaced those with epitope sequences of the transmitted virus. These studies demonstrate that mutant epitope-specific CD8+ T lymphocytes that are present at a time when viral mutant epitope sequences are detected at extremely low frequencies fail to contain the later accumulation and fixation of the mutant epitope sequences in the viral quasispecies.
PMCID: PMC3126128  PMID: 21307185
17.  Transmission of Single HIV-1 Genomes and Dynamics of Early Immune Escape Revealed by Ultra-Deep Sequencing 
PLoS ONE  2010;5(8):e12303.
We used ultra-deep sequencing to obtain tens of thousands of HIV-1 sequences from regions targeted by CD8+ T lymphocytes from longitudinal samples from three acutely infected subjects, and modeled viral evolution during the critical first weeks of infection. Previous studies suggested that a single virus established productive infection, but these conclusions were tempered because of limited sampling; now, we have greatly increased our confidence in this observation through modeling the observed earliest sample diversity based on vastly more extensive sampling. Conventional sequencing of HIV-1 from acute/early infection has shown different patterns of escape at different epitopes; we investigated the earliest escapes in exquisite detail. Over 3–6 weeks, ultradeep sequencing revealed that the virus explored an extraordinary array of potential escape routes in the process of evading the earliest CD8 T-lymphocyte responses – using 454 sequencing, we identified over 50 variant forms of each targeted epitope during early immune escape, while only 2–7 variants were detected in the same samples via conventional sequencing. In contrast to the diversity seen within epitopes, non-epitope regions, including the Envelope V3 region, which was sequenced as a control in each subject, displayed very low levels of variation. In early infection, in the regions sequenced, the consensus forms did not have a fitness advantage large enough to trigger reversion to consensus amino acids in the absence of immune pressure. In one subject, a genetic bottleneck was observed, with extensive diversity at the second time point narrowing to two dominant escape forms by the third time point, all within two months of infection. Traces of immune escape were observed in the earliest samples, suggesting that immune pressure is present and effective earlier than previously reported; quantifying the loss rate of the founder virus suggests a direct role for CD8 T-lymphocyte responses in viral containment after peak viremia. Dramatic shifts in the frequencies of epitope variants during the first weeks of infection revealed a complex interplay between viral fitness and immune escape.
PMCID: PMC2924888  PMID: 20808830

Results 1-17 (17)