PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("dolina, Tamas")
1.  Characterization of macroautophagic flux in vivo using a leupeptin-based assay 
Autophagy  2011;7(6):629-642.
Macroautophagy is a highly conserved catabolic process that is crucial for organ homeostasis in mammals. However, methods to directly measure macroautophagic activity (or flux) in vivo are limited. In this study we developed a quantitative macroautophagic flux assay based on measuring LC3b protein turnover in vivo after administering the protease inhibitor leupeptin. Using this assay we then characterized basal macroautophagic flux in different mouse organs. We found that the rate of LC3b accumulation after leupeptin treatment was greatest in the liver and lowest in spleen. Interestingly we found that LC3a, an ATG8/LC3b homologue and the LC3b-interacting protein p62 were degraded with similar kinetics to LC3b. However, the LC3b-related proteins GABARAP and GATE-16 were not rapidly turned over in mouse liver, implying that different LC3b homologues may contribute to macroautophagy via distinct mechanisms. Nutrient starvation augmented macroautophagic flux as measured by our assay, while refeeding the animals after a period of starvation significantly suppressed flux. We also confirmed that beclin 1 heterozygous mice had reduced basal macroautophagic flux compared to wild-type littermates. These results illustrate the usefulness of our leupeptin-based assay for studying the dynamics of macroautophagy in mice.
doi:10.4161/auto.7.6.15100
PMCID: PMC3127049  PMID: 21460622
macroautophagy; autophagy; flux; mice; in vivo; LC3; GABARAP; GATE-16; leupeptin; cycloheximide
2.  Autophagy proteins regulate innate immune response by inhibiting NALP3 inflammasome-mediated mitochondrial DNA release 
Nature immunology  2010;12(3):222-230.
Autophagy, a cellular process for organelle and protein turnover, regulates innate immune responses. We demonstrate that depletion of autophagic proteins microtubule associated protein-1 light chain 3B (LC3B) and Beclin 1 enhances caspase-1 activation and secretion of interleukin-1β and interleukin-18. Autophagic protein depletion promoted accumulation of dysfunctional mitochondria and cytosolic translocation of mitochondrial DNA (mtDNA) in response to lipopolysaccharide (LPS) and ATP in macrophages. Release of mtDNA into the cytosol depended on the NALP3 inflammasome and mitochondrial ROS. Cytosolic mtDNA contributed to IL-1β and IL-18 secretion in response to LPS and ATP. LC3B-deficient mice produced more caspase-1-dependent cytokines in two sepsis models and were susceptible to LPS-induced mortality. Our study suggests that autophagic proteins regulate NALP3-dependent inflammation by preserving mitochondrial integrity.
doi:10.1038/ni.1980
PMCID: PMC3079381  PMID: 21151103
3.  Carbon monoxide prevents ventilator induced lung injury via caveolin-1 
Critical care medicine  2009;37(5):1708-1715.
Objectives
Carbon monoxide (CO) can confer anti-inflammatory protection in rodent models of ventilator-induced lung injury (VILI). Caveolin-1 exerts a critical role in cellular responses to mechanical stress, and has been shown to mediate cytoprotective effects of CO in vitro. We sought to determine the role of caveolin-1 in lung susceptibility to VILI in mice. Furthermore, we assessed the role of caveolin-1 in the tissue protective effects of CO in the VILI model.
Design
Prospective experimental study
Setting
University laboratory
Subjects
Wild type (wt) and caveolin-1 deficient (cav-−/−) mice
Interventions
Mice were subjected to tracheostomy and arterial cannulation. Wt and cav-1−/− mice were ventilated with a tidal volume of 12 ml/kg body weight and a frequency of 80/min for 5 min as control, or for 8h with air in the absence or presence of CO (250 parts per million). Bronchoalveolar lavage (BAL) and histology were used to determine lung injury. Lung sections or homogenates were analyzed for caveolin-1 expression by immunohistochemical staining or Western Blotting, respectively.
Measurements and Main Results
Ventilation led to an increase in BAL protein concentration, cell count, neutrophil recruitment, and edema formation that was prevented in the presence of CO. While ventilation alone slightly induced caveolin-1 expression in epithelial cells, the application of CO during the ventilation significantly increased the expression of caveolin-1. In comparison to wt mice, mechanical ventilation of cav-1−/− mice led to a significantly higher degree of lung injury as compared to wt mice. In contrast to its effectiveness in wt mice, CO-administration failed to reduce lung injury markers in cav-1−/− mice.
Conclusions
Caveolin-1 null mice are more susceptible to VILI. Carbon monoxide executes lung protective effects during mechanical ventilation that are dependent in part, on caveolin-1 expression.
doi:10.1097/CCM.0b013e31819efa31
PMCID: PMC3086639  PMID: 19325477
ventilator induced lung injury; mechanical ventilation; carbon monoxide; caveolin-1; mechanotransduction; acute lung injury
4.  Carbon Monoxide Protects against Ventilator-induced Lung Injury via PPAR-γ and Inhibition of Egr-1 
Rationale: Ventilator-induced lung injury (VILI) leads to an unacceptably high mortality. In this regard, the antiinflammatory properties of inhaled carbon monoxide (CO) may provide a therapeutic option.
Objectives: This study explores the mechanisms of CO-dependent protection in a mouse model of VILI.
Methods: Mice were ventilated (12 ml/kg, 1–8 h) with air in the absence or presence of CO (250 ppm). Airway pressures, blood pressure, and blood gases were monitored. Lung tissue was analyzed for inflammation, injury, and gene expression. Bronchoalveolar lavage fluid was analyzed for protein, cell and neutrophil counts, and cytokines.
Measurements and Main Results: Mechanical ventilation caused significant lung injury reflected by increases in protein concentration, total cell and neutrophil counts in the bronchoalveolar lavage fluid, as well as the induction of heme oxygenase-1 and heat shock protein-70 in lung tissue. In contrast, CO application prevented lung injury during ventilation, inhibited stress-gene up-regulation, and decreased lung neutrophil infiltration. These effects were preceded by the inhibition of ventilation-induced cytokine and chemokine production. Furthermore, CO prevented the early ventilation-dependent up-regulation of early growth response-1 (Egr-1). Egr-1–deficient mice did not sustain lung injury after ventilation, relative to wild-type mice, suggesting that Egr-1 acts as a key proinflammatory regulator in VILI. Moreover, inhibition of peroxysome proliferator-activated receptor (PPAR)-γ, an antiinflammatory nuclear regulator, by GW9662 abolished the protective effects of CO.
Conclusions: Mechanical ventilation causes profound lung injury and inflammatory responses. CO treatment conferred protection in this model dependent on PPAR-γ and inhibition of Egr-1.
doi:10.1164/rccm.200708-1265OC
PMCID: PMC2408440  PMID: 18356564
carbon monoxide; early growth response-1; inflammation; peroxysome proliferator-activated receptor-γ; ventilator-induced lung injury

Results 1-4 (4)