PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-17 (17)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  The Multidisciplinary Translational Team (MTT) Model for Training and Development of Translational Research Investigators 
Multi-institutional research collaborations now form the most rapid and productive project execution structures in the health sciences. Effective adoption of a multidisciplinary team research approach is widely accepted as one mechanism enabling rapid translation of new discoveries into interventions in human health. Although the impact of successful team-based approaches facilitating innovation has been well-documented, its utility for training a new generation of scientists has not been thoroughly investigated. We describe the characteristics of how multidisciplinary translational teams (MTTs) promote career development of translational research scholars through competency building, inter-professional integration, and team-based mentoring approaches. Exploratory longitudinal and outcome assessments from our experience show that MTT membership had a positive effect on the development of translational research competencies, as determined by a self-report survey of 32 scholars. We also observed that all trainees produced a large number of collaborative publications that appeared to be associated with their CTSA association and participation with MTTs. We conclude that the MTT model provides a unique training environment for translational and team-based learning activities, for investigators at early stages of career development.
doi:10.1111/cts.12281
PMCID: PMC4626313  PMID: 26010046
Clinical translational science award; early career investigators; interdisciplinary science; translational research competencies; team-science education
2.  The Potential Role of 8-Oxoguanine DNA Glycosylase-Driven DNA Base Excision Repair in Exercise-Induced Asthma 
Mediators of Inflammation  2016;2016:3762561.
Asthma is characterized by reversible airway narrowing, shortness of breath, wheezing, coughing, and other symptoms driven by chronic inflammatory processes, commonly triggered by allergens. In 90% of asthmatics, most of these symptoms can also be triggered by intense physical activities and severely exacerbated by environmental factors. This condition is known as exercise-induced asthma (EIA). Current theories explaining EIA pathogenesis involve osmotic and/or thermal alterations in the airways caused by changes in respiratory airflow during exercise. These changes, along with existing airway inflammatory conditions, are associated with increased cellular levels of reactive oxygen species (ROS) affecting important biomolecules including DNA, although the underlying molecular mechanisms have not been completely elucidated. One of the most abundant oxidative DNA lesions is 8-oxoguanine (8-oxoG), which is repaired by 8-oxoguanine DNA glycosylase 1 (OGG1) during the base excision repair (BER) pathway. Whole-genome expression analyses suggest a cellular response to OGG1-BER, involving genes that may have a role in the pathophysiology of EIA leading to mast cell degranulation, airway hyperresponsiveness, and bronchoconstriction. Accordingly, this review discusses a potential new hypothesis in which OGG1-BER-induced gene expression is associated with EIA symptoms.
doi:10.1155/2016/3762561
PMCID: PMC4976190  PMID: 27524866
3.  Whole transcriptome analysis reveals an 8-oxoguanine DNA glycosylase-1-driven DNA repair-dependent gene expression linked to essential biological processes 
Reactive oxygen species inflict oxidative modifications on various biological molecules, including DNA. One of the most abundant DNA base lesions 8-oxo-7,8-dihydroguanine (8-oxoG) is repaired by 8-oxoguanine DNA glycosylase-1 (OGG1) during DNA base excision repair (OGG1-BER). 8-OxoG accumulation in DNA has been associated with various pathological and aging processes, while its role is unclear. The lack of OGG1-BER in Ogg1-/- mice resulted in decreased inflammatory responses, increased susceptibility to infections and metabolic disorders. Therefore, we proposed that OGG1 and/or 8-oxoG base may have a role in immune and homeostatic processes. To test our hypothesis, we challenged mouse lungs with OGG1-BER product 8-oxoG base and changes in gene expression were determined by RNA sequencing and data were analyzed by gene ontology and statistical tools. RNA-Seq analysis identified 1592 differentially expressed (≥ 3-fold change) transcripts. The upregulated mRNAs were related to biological processes, including homeostatic, immune-system, macrophage activation, regulation of liquid-surface tension, and response to stimulus. These processes were mediated by chemokines, cytokines, gonadotropin-releasing hormone receptor, integrin and interleukin signaling pathways. Taken together, these findings points to a new paradigm showing that OGG1-BER plays a role in various biological processes that may benefit host, but when is in excess could be implicated in disease and/or aging processes.
doi:10.1016/j.freeradbiomed.2015.01.004
PMCID: PMC4359954  PMID: 25614460
OGG1-BER; 8-oxoguanine; gene expression; biological processes
4.  Evolution of Multidisciplinary Translational Teams (MTTs): Insights for Accelerating Translational Innovations 
There is growing consensus about the factors critical for development and productivity of multidisciplinary teams, but few studies have evaluated their longitudinal changes. We present a longitudinal study of 10 multidisciplinary translational teams (MTTs), based on team process and outcome measures, evaluated before and after 3 years of CTSA collaboration. Using a mixed methods approach, an expert panel of five judges (familiar with the progress of the teams) independently rated team performance based on four process and four outcome measures, and achieved a rating consensus. Although all teams made progress in translational domains, other process and outcome measures were highly variable. The trajectory profiles identified four categories of team performance. Objective bibliometric analysis of CTSA-supported MTTs with positive growth in process scores showed that these teams tended to have enhanced scientific outcomes and published in new scientific domains, indicating the conduct of innovative science. Case exemplars revealed that MTTs that experienced growth in both process and outcome evaluative criteria also experienced greater innovation, defined as publications in different areas of science. Of the eight evaluative criteria, leadership-related behaviors were the most resistant to the interventions introduced. Well-managed MTTs demonstrate objective productivity and facilitate innovation.
doi:10.1111/cts.12266
PMCID: PMC4575623  PMID: 25801998
translational research; multidisciplinary teams; team evolution
5.  Mechanisms of Heightened Airway Sensitivity and Responses to Inhaled SO2 in Asthmatics 
Environmental Health Insights  2015;9(Suppl 1):13-25.
Sulfur dioxide (SO2) is a problematic inhalable air pollutant in areas of widespread industrialization, not only in the United States but also in countries undergoing rapid industrialization, such as China, and it can be a potential trigger factor for asthma exacerbations. It is known that asthmatics are sensitive to the effects of SO2; however, the basis of this enhanced sensitivity remains incompletely understood. A PubMed search was performed over the course of 2014, encompassing the following terms: asthma, airway inflammation, sulfur dioxide, IL-10, mouse studies, and human studies. This search indicated that biomarkers of SO2 exposure, SO2 effects on airway epithelial cell function, and animal model data are useful in our understanding of the body’s response to SO2, as are SO2-associated amplification of allergic inflammation, and potential promotion of neurogenic inflammation due to chemical irritant properties. While definitive answers are still being sought, these areas comprise important foci of consideration regarding asthmatic responses to inhaled SO2. Furthermore, IL-10 deficiency associated with asthma may be another important factor associated with an inability to resolve inflammation and mitigate oxidative stress resulting from SO2 inhalation, supporting the idea that asthmatics are predisposed to SO2 sensitivity, leading to asthma exacerbations and airway dysfunction.
doi:10.4137/EHI.S15671
PMCID: PMC4384764  PMID: 25922579
sulfur dioxide; asthma; IL-10
6.  Predictors of Response to Tiotropium Versus Salmeterol in Adults with Asthma1 
The Journal of allergy and clinical immunology  2013;132(5):10.1016/j.jaci.2013.08.003.
Background
Tiotropium has activity as an asthma controller. However, predictors of a positive response to tiotropium have not been described.
Objective
To describe individual and differential response of patients with asthma to salmeterol and tiotropium, when added to an ICS, as well as predictors of a positive clinical response.
Methods
Data from the double-blind, three-way crossover NHLBI Asthma Clinical Research Network’s TALC trial (ClinicalTrials.gov number, NCT00565266) were analyzed for individual and differential treatment responses to salmeterol and tiotropium, and predictors of a positive response to the endpoints FEV1, morning peak expiratory flow (AM PEF), and asthma control days (ACDs).
Results
While approximately equal numbers of patients showed a differential response to salmeterol and tiotropium in terms of AM PEF (90 and 78, respectively), and ACDs (49 and 53, respectively), more showed a differential response to tiotropium for FEV1 (104) than salmeterol (62). An acute response to a short-acting bronchodilator, especially albuterol, predicted a positive clinical response to tiotropium for FEV1 (OR 4.08 [CI 2.00–8.31], P < 0.001) and AM PEF (OR 2.12 [CI 1.12–4.01], P = 0.021), as did a decreased FEV1/FVC ratio (FEV1 response increased 0.39% of baseline for every 1% decrease in the FEV1/FVC ratio). Higher cholinergic tone was also a predictor, while ethnicity, gender, atopy, IgE Level, sputum eosinophils, FENO, asthma duration, and BMI were not.
Conclusion
While these results need confirmation, predictors of a positive clinical response to tiotropium include a positive response to albuterol and airway obstruction, factors which could help identify appropriate patients for this therapy.
doi:10.1016/j.jaci.2013.08.003
PMCID: PMC3826080  PMID: 24084072
asthma; tiotropium; salmeterol; responder analysis; predictor of response
7.  Symptom-Based Controller Therapy: A New Paradigm for Asthma Management 
Appropriate management of persistent asthma, according to US and international guidelines, requires daily use of controller medications, most generally, inhaled corticosteroids (ICS). This approach, although effective and well established, imposes burdens of treatment and side effects onto asthma patients. A growing body of evidence suggests that patients with persistent asthma need not be managed with daily ICS, but rather can use them on an intermittent basis, occasioned by the occurrence of symptoms sufficient to warrant treatment with a rescue inhaler. Large, randomized, controlled studies, over a range of asthma severity, and in a range of ages from pediatrics to adults, suggest that in well-selected patients, a symptom based approach to administering controller therapy may produce equivalent outcomes, while reducing exposure to ICS. The concept of providing anti-inflammatory treatment to the patient, at the time inflammation is developing, is termed ‘temporal personalization’. The evidence to date suggests that symptom-based controller therapy is broadly useful in selected asthma patients, and is a management approach that could be incorporated into US and international guidelines for asthma.
doi:10.1007/s11882-013-0375-7
PMCID: PMC3794434  PMID: 23904098
Asthma; Inhaled corticosteroids; Symptom-based controller therapy; Management; Treatment
8.  Assessing and Evaluating Multidisciplinary Translational Teams: A Mixed Methods Approach 
A case report illustrates how multidisciplinary translational teams can be assessed using outcome, process, and developmental types of evaluation using a mixed methods approach. Types of evaluation appropriate for teams are considered in relation to relevant research questions and assessment methods. Logic models are applied to scientific projects and team development to inform choices between methods within a mixed methods design. Use of an expert panel is reviewed, culminating in consensus ratings of 11 multidisciplinary teams and a final evaluation within a team type taxonomy. Based on team maturation and scientific progress, teams were designated as: a) early in development, b) traditional, c) process focused, or d) exemplary. Lessons learned from data reduction, use of mixed methods, and use of expert panels are explored.
doi:10.1177/0163278713504433
PMCID: PMC4180502  PMID: 24064432
team science; logic models; process evaluation; translational teams; mixed methods
9.  Comparison of Physician-, Biomarker-, and Symptom-Based Strategies for Adjustment of Inhaled Corticosteroid Therapy in Adults With Asthma 
Context
No consensus exists for adjusting inhaled corticosteroid therapy in patients with asthma. Approaches include adjustment at outpatient visits guided by physician assessment of asthma control (symptoms, rescue therapy, pulmonary function), based on exhaled nitric oxide, or on a day-to-day basis guided by symptoms.
Objective
To determine if adjustment of inhaled corticosteroid therapy based on exhaled nitric oxide or day-to-day symptoms is superior to guideline-informed, physician assessment–based adjustment in preventing treatment failure in adults with mild to moderate asthma.
Design, Setting, and Participants
A randomized, parallel, 3-group, placebo-controlled, multiply-blinded trial of 342 adults with mild to moderate asthma controlled by low-dose inhaled corticosteroid therapy (n=114 assigned to physician assessment–based adjustment [101 completed], n=115 to biomarker-based [exhaled nitric oxide] adjustment [92 completed], and n=113 to symptom-based adjustment [97 completed]), the Best Adjustment Strategy for Asthma in the Long Term (BASALT) trial was conducted by the Asthma Clinical Research Network at 10 academic medical centers in the United States for 9 months between June 2007 and July 2010.
Interventions
For physician assessment–based adjustment and biomarker-based (exhaled nitric oxide) adjustment, the dose of inhaled corticosteroids was adjusted every 6 weeks; for symptom-based adjustment, inhaled corticosteroids were taken with each albuterol rescue use.
Main Outcome Measure
The primary outcome was time to treatment failure.
Results
There were no significant differences in time to treatment failure. The 9-month Kaplan-Meier failure rates were 22% (97.5% CI, 14%-33%; 24 events) for physician assessment–based adjustment, 20% (97.5% CI, 13%-30%; 21 events) for biomarker-based adjustment, and 15% (97.5% CI, 9%-25%; 16 events) for symptom-based adjustment. The hazard ratio for physician assessment–based adjustment vs biomarker-based adjustment was 1.2 (97.5% CI, 0.6-2.3). The hazard ratio for physician assessment–based adjustment vs symptom-based adjustment was 1.6 (97.5% CI, 0.8-3.3).
Conclusion
Among adults with mild to moderate persistent asthma controlled with low-dose inhaled corticosteroid therapy, the use of either biomarker-based or symptom-based adjustment of inhaled corticosteroids was not superior to physician assessment–based adjustment of inhaled corticosteroids in time to treatment failure.
Trial Registration
clinicaltrials.gov Identifier: NCT00495157
doi:10.1001/2012.jama.10893
PMCID: PMC3697088  PMID: 22968888
10.  A trial of clarithromycin for the treatment of suboptimally controlled asthma 
Background
Polymerase chain reaction (PCR) studies have demonstrated evidence of M. pneumoniae and C. pneumoniae in the lower airways of patients with asthma.
Objective
To test the hypothesis that clarithromycin would improve asthma control in individuals with mild-to-moderate persistent asthma that was not well-controlled despite treatment with low-dose inhaled corticosteroids (ICS).
Methods
Adults with an Asthma Control Questionnaire (ACQ) score ≥1.5 after a 4 week period of treatment with fluticasone propionate were entered into a PCR-stratified randomized trial to evaluate the effect of 16 weeks of either clarithromycin or placebo, added to fluticasone, on asthma control in individuals with or without lower airway PCR evidence of M. pneumoniae or C. pneumoniae.
Results
92 participants were randomized. Twelve (13%) subjects demonstrated PCR evidence of M. pneumoniae or C. pneumoniae in endobronchial biopsies; 80 were PCR negative for both organisms. In PCR positive participants, clarithromycin yielded a 0.4±0.4 unit improvement in the ACQ score, with a 0.1±0.3 unit improvement in those allocated to placebo. This between-group difference of 0.3±0.5 (p=0.6) was neither clinically nor statistically significant. In PCR negative participants, a non-significant between-group difference of 0.2±0.2 units (p=0.3) was observed. Clarithromycin did not improve lung function or airway inflammation but did improve airway hyperresponsiveness, increasing the methacholine PC20 by 1.2±0.5 doubling doses (p=0.02) in the study population.
Conclusion
Adding clarithromycin to fluticasone in adults with mild-to-moderate persistent asthma that was suboptimally-controlled by low-dose ICS alone did not further improve asthma control. Although there was an improvement in airway hyperresponsiveness with clarithromycin, this benefit was not accompanied by improvements in other secondary outcomes.
doi:10.1016/j.jaci.2010.07.024
PMCID: PMC2950827  PMID: 20920764
asthma; infection; antibiotic
11.  Tiotropium Bromide Step-Up Therapy for Adults with Uncontrolled Asthma 
The New England journal of medicine  2010;363(18):1715-1726.
BACKGROUND
Long-acting beta-agonist (LABA) therapy improves symptoms in patients whose asthma is poorly controlled by an inhaled glucocorticoid alone. Alternative treatments for adults with uncontrolled asthma are needed.
METHODS
In a three-way, double-blind, triple-dummy crossover trial involving 210 patients with asthma, we evaluated the addition of tiotropium bromide (a long-acting anticholinergic agent approved for the treatment of chronic obstructive pulmonary disease but not asthma) to an inhaled glucocorticoid, as compared with a doubling of the dose of the inhaled glucocorticoid (primary superiority comparison) or the addition of the LABA salmeterol (secondary noninferiority comparison).
RESULTS
The use of tiotropium resulted in a superior primary outcome, as compared with a doubling of the dose of an inhaled glucocorticoid, as assessed by measuring the morning peak expiratory flow (PEF), with a mean difference of 25.8 liters per minute (P<0.001) and superiority in most secondary outcomes, including evening PEF, with a difference of 35.3 liters per minute (P<0.001); the proportion of asthma-control days, with a difference of 0.079 (P = 0.01); the forced expiratory volume in 1 second (FEV1) before bronchodilation, with a difference of 0.10 liters (P = 0.004); and daily symptom scores, with a difference of −0.11 points (P<0.001). The addition of tiotropium was also noninferior to the addition of salmeterol for all assessed outcomes and increased the prebronchodilator FEV1 more than did salmeterol, with a difference of 0.11 liters (P = 0.003).
CONCLUSIONS
When added to an inhaled glucocorticoid, tiotropium improved symptoms and lung function in patients with inadequately controlled asthma. Its effects appeared to be equivalent to those with the addition of salmeterol. (Funded by the National Heart, Lung, and Blood Institute; ClinicalTrials.gov number, NCT00565266.)
doi:10.1056/NEJMoa1008770
PMCID: PMC3011177  PMID: 20979471
12.  Effect of β2-adrenergic receptor polymorphism on response to longacting β2 agonist in asthma (LARGE trial): a genotype-stratified, randomised, placebo-controlled, crossover trial 
Lancet  2009;374(9703):1754-1764.
Summary
Background
Combined long-acting β2-agonist and inhaled corticosteroid (LABA/ICS) therapy improves outcomes in many asthmatics. Some studies suggest that patients homozygous for arginine at the 16th amino-acid position of the β2 adrenergic receptor (B16 Arg/Arg) benefit less than those with B16 Gly/Gly.
Methods
In an NIH-funded, B16 genotype-stratified, prospective, randomized, double-blind, placebo-controlled, cross-over trial (www.ClinicalTrials.gov registration ID NCT00200967), we compared adding salmeterol or placebo to ICS in patients with moderate asthma, using AM PEF as the primary outcome.
Findings
After 18 weeks, Arg/Arg (n=42) and Gly/Gly (n=45) subjects had greater AM PEF with salmeterol than placebo, with no difference in improvement by genotype (Arg/Arg 21.4 (p<0.0001) vs. Gly/Gly 21.5 L/min (p<0.0001); 0.1 L/min difference between genotypes, 95% CI (−14.2, 14.4), p=0.99). In Gly/Gly subjects, methacholine PC20 (a secondary outcome) doubled when salmeterol was added to ICS (p<0.0001), but remained unchanged in Arg/Arg subjects (p=0.87) (1.32 doubling dose difference between genotypes (95%CI 0.43,2.21), p=0.0038). An exploratory posthoc subset analysis of African Americans showed that salmeterol improved the AM and PM PEF for the 8 Gly/Gly subjects (29 L/min, p=0.013 and 45 L/min, p= 0.0005, respectively) but not for the 9 Arg/Arg subjects (−12 L/min, p=0.57 and−2.2 L/min, p=0.92, respectively).
Interpretation
B16 Arg/Arg and Gly/Gly patients experience improved airway function with salmeterol added to moderate-dose ICS. While these data provide reassurance that in the general population these polymorphisms should not alter the use of LABA with moderate-dose ICS, the significance of the genotype-differentiated response in airway reactivity favoring Gly/Gly subjects and the post-hoc analysis in African Americans require further investigation.
doi:10.1016/S0140-6736(09)61492-6
PMCID: PMC2914569  PMID: 19932356
Asthma; pharmacogenetics; beta-adrenergic receptor; beta-agonists; salmeterol
13.  Characterization of the severe asthma phenotype by the National Heart, Lung, and Blood Institute’s Severe Asthma Research Program 
Background
Severe asthma causes the majority of asthma morbidity. Understanding mechanisms that contribute to the development of severe disease is important.
Objective
The goal of the Severe Asthma Research Program is to identify and characterize subjects with severe asthma to understand pathophysiologic mechanisms in severe asthma.
Methods
We performed a comprehensive phenotypic characterization (questionnaires, atopy and pulmonary function testing, phlebotomy, exhaled nitric oxide) in subjects with severe and not severe asthma.
Results
A total of 438 subjects with asthma were studied (204 severe, 70 moderate, 164 mild). Severe subjects with asthma were older with longer disease duration (P < .0001), more daily symptoms, intense urgent health care utilization, sinusitis, and pneumonia (P ≤ .0001). Lung function was lower in severe asthma with marked bronchodilator reversibility (P < .001). The severe group had less atopy by skin tests (P = .0007), but blood eosinophils, IgE, and exhaled nitric oxide levels did not differentiate disease severity. A reduced FEV1, history of pneumonia, and fewer positive skin tests were risk factors for severe disease. Early disease onset (age < 12 years) in severe asthma was associated with longer disease duration (P < .0001) and more urgent health care, especially intensive care (P = .002). Later disease onset (age ≥ 12 years) was associated with lower lung function and sinopulmonary infections (P ≤ .02).
Conclusion
Severe asthma is characterized by abnormal lung function that is responsive to bronchodilators, a history of sinopulmonary infections, persistent symptoms, and increased health care utilization.
Clinical implications
Lung function abnormalities in severe asthma are reversible in most patients, and pneumonia is a risk factor for the development of severe disease.
doi:10.1016/j.jaci.2006.11.639
PMCID: PMC2837934  PMID: 17291857
Severe asthma; definition; bronchodilator response; pathophysiology; phenotype; pneumonia
14.  Predicting worsening asthma control following the common cold 
The asthmatic response to the common cold is highly variable and early characteristics that predict worsening of asthma control following a cold have not been identified.
In this prospective multi-center cohort study of 413 adult subjects with asthma, we used the mini-Asthma Control Questionnaire (mini-ACQ) to quantify changes in asthma control and the Wisconsin Upper Respiratory Symptom Survey-21 (WURSS-21) to measure cold severity. Univariate and multivariable models examined demographic, physiologic, serologic, and cold-related characteristics for their relationship to changes in asthma control following a cold.
We observed a clinically significant worsening of asthma control following a cold (increase in mini-ACQ of 0.69 ± 0.93). Univariate analysis demonstrated season, center location, cold length, and cold severity measurements all associated with a change in asthma control. Multivariable analysis of the covariates available within the first 2 days of cold onset revealed the day 2 and the cumulative sum of the day 1 and 2 WURSS-21 scores were significant predictors for the subsequent changes in asthma control.
In asthmatic subjects the cold severity measured within the first 2 days can be used to predict subsequent changes in asthma control. This information may help clinicians prevent deterioration in asthma control following a cold.
doi:10.1183/09031936.00026808
PMCID: PMC2592508  PMID: 18768579
asthma; asthma control; common cold
15.  Non-invasive measurements of exhaled NO and CO associated with methacholine responses in mice 
Respiratory Research  2008;9(1):45.
Background
Nitric oxide (NO) and carbon monoxide (CO) in exhaled breath are considered obtainable biomarkers of physiologic mechanisms. Therefore, obtaining their measures simply, non-invasively, and repeatedly, is of interest, and was the purpose of the current study.
Methods
Expired NO (ENO) and CO (ECO) were measured non-invasively using a gas micro-analyzer on several strains of mice (C57Bl6, IL-10-/-, A/J, MKK3-/-, JNK1-/-, NOS-2-/- and NOS-3-/-) with and without allergic airway inflammation (AI) induced by ovalbumin systemic sensitization and aerosol challenge, compared using independent-sample t-tests between groups, and repeated measures analysis of variance (ANOVA) within groups over time of inflammation induction. ENO and ECO were also measured in C57Bl6 and IL-10-/- mice, ages 8–58 weeks old, the relationship of which was determined by regression analysis. S-methionyl-L-thiocitrulline (SMTC), and tin protoporphyrin (SnPP) were used to inhibit neuronal/constitutive NOS-1 and heme-oxygenase, respectively, and alter NO and CO production, respectively, as assessed by paired t-tests. Methacholine-associated airway responses (AR) were measured by the enhanced pause method, with comparisons by repeated measures ANOVA and post-hoc testing.
Results
ENO was significantly elevated in naïve IL-10-/- (9–14 ppb) and NOS-2-/- (16 ppb) mice as compared to others (average: 5–8 ppb), whereas ECO was significantly higher in naïve A/J, NOS-3-/- (3–4 ppm), and MKK3-/- (4–5 ppm) mice, as compared to others (average: 2.5 ppm). As compared to C57Bl6 mice, AR of IL-10-/-, JNK1-/-, NOS-2-/-, and NOS-3-/- mice were decreased, whereas they were greater for A/J and MKK3-/- mice. SMTC significantly decreased ENO by ~30%, but did not change AR in NOS-2-/- mice. SnPP reduced ECO in C57Bl6 and IL-10-/- mice, and increased AR in NOS-2-/- mice. ENO decreased as a function of age in IL-10-/- mice, remaining unchanged in C57Bl6 mice.
Conclusion
These results are consistent with the ideas that: 1) ENO is associated with mouse strain and knockout differences in NO production and AR, 2) alterations of ENO and ECO can be measured non-invasively with induction of allergic AI or inhibition of key gas-producing enzymes, and 3) alterations in AR may be dependent on the relative balance of NO and CO in the airway.
doi:10.1186/1465-9921-9-45
PMCID: PMC2474844  PMID: 18505586
16.  In vitro cytotoxicity of Manville Code 100 glass fibers: Effect of fiber length on human alveolar macrophages 
Background
Synthetic vitreous fibers (SVFs) are inorganic noncrystalline materials widely used in residential and industrial settings for insulation, filtration, and reinforcement purposes. SVFs conventionally include three major categories: fibrous glass, rock/slag/stone (mineral) wool, and ceramic fibers. Previous in vitro studies from our laboratory demonstrated length-dependent cytotoxic effects of glass fibers on rat alveolar macrophages which were possibly associated with incomplete phagocytosis of fibers ≥ 17 μm in length. The purpose of this study was to examine the influence of fiber length on primary human alveolar macrophages, which are larger in diameter than rat macrophages, using length-classified Manville Code 100 glass fibers (8, 10, 16, and 20 μm). It was hypothesized that complete engulfment of fibers by human alveolar macrophages could decrease fiber cytotoxicity; i.e. shorter fibers that can be completely engulfed might not be as cytotoxic as longer fibers. Human alveolar macrophages, obtained by segmental bronchoalveolar lavage of healthy, non-smoking volunteers, were treated with three different concentrations (determined by fiber number) of the sized fibers in vitro. Cytotoxicity was assessed by monitoring cytosolic lactate dehydrogenase release and loss of function as indicated by a decrease in zymosan-stimulated chemiluminescence.
Results
Microscopic analysis indicated that human alveolar macrophages completely engulfed glass fibers of the 20 μm length. All fiber length fractions tested exhibited equal cytotoxicity on a per fiber basis, i.e. increasing lactate dehydrogenase and decreasing chemiluminescence in the same concentration-dependent fashion.
Conclusion
The data suggest that due to the larger diameter of human alveolar macrophages, compared to rat alveolar macrophages, complete phagocytosis of longer fibers can occur with the human cells. Neither incomplete phagocytosis nor length-dependent toxicity was observed in fiber-exposed human macrophage cultures. In contrast, rat macrophages exhibited both incomplete phagocytosis of long fibers and length-dependent toxicity. The results of the human and rat cell studies suggest that incomplete engulfment may enhance cytotoxicity of fiber glass. However, the possibility should not be ruled out that differences between human versus rat macrophages other than cell diameter could account for differences in fiber effects.
doi:10.1186/1743-8977-3-5
PMCID: PMC1459188  PMID: 16569233
17.  Tolerance induced by inhaled antigen involves CD4+ T cells expressing membrane-bound TGF-β and FOXP3 
Under normal circumstances, the respiratory tract maintains immune tolerance in the face of constant antigen provocation. Using a murine model of tolerance induced by repeated exposure to a low dose of aerosolized antigen, we show an important contribution by CD4+ T cells in the establishment and maintenance of tolerance. The CD4+ T cells expressed both cell surface and soluble TGF-β and inhibited the development of an allergic phenotype when adoptively transferred to naive recipient mice. While cells expressing cell surface TGF-β were detectable in mice with inflammation, albeit at a lower frequency compared with that in tolerized mice, only those from tolerized mice expressed FOXP3. Blockade of TGF-β in vitro and in vivo interfered with immunosuppression. Although cells that expressed TGF-β on the cell surface (TGF-β+), as well as the ones that did not (TGF-β–), secreted equivalent levels of soluble TGF-β, only the former were able to blunt the development of an allergic phenotype in mice. Strikingly, separation of the TGF-β+ cells from the rest of the cells allowed the TGF-β– cells to proliferate in response to antigen. We propose a model of antigen-induced tolerance that involves cell-cell contact with regulatory CD4+ T cells that coexpress membrane-bound TGF-β and FOXP3.
doi:10.1172/JCI200420509
PMCID: PMC437966  PMID: 15232609

Results 1-17 (17)