PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication 
Nature  2010;464(7290):898-902.
Advances in genome technology have facilitated a new understanding of the historical and genetic processes crucial to rapid phenotypic evolution under domestication1,2. To understand the process of dog diversification better, we conducted an extensive genome-wide survey of more than 48,000 single nucleotide polymorphisms in dogs and their wild progenitor, the grey wolf. Here we show that dog breeds share a higher proportion of multi-locus haplotypes unique to grey wolves from the Middle East, indicating that they are a dominant source of genetic diversity for dogs rather than wolves from east Asia, as suggested by mitochondrial DNA sequence data3. Furthermore, we find a surprising correspondence between genetic and phenotypic/functional breed groupings but there are exceptions that suggest phenotypic diversification depended in part on the repeated crossing of individuals with novel phenotypes. Our results show that Middle Eastern wolves were a critical source of genome diversity, although interbreeding with local wolf populations clearly occurred elsewhere in the early history of specific lineages. More recently, the evolution of modern dog breeds seems to have been an iterative process that drew on a limited genetic toolkit to create remarkable phenotypic diversity.
doi:10.1038/nature08837
PMCID: PMC3494089  PMID: 20237475
2.  Coat Variation in the Domestic Dog Is Governed by Variants in Three Genes 
Science (New York, N.Y.)  2009;326(5949):150-153.
Coat color and type are essential characteristics of domestic dog breeds. Although the genetic basis of coat color has been well characterized, relatively little is known about the genes influencing coat growth pattern, length, and curl. We performed genome-wide association studies of more than 1000 dogs from 80 domestic breeds to identify genes associated with canine fur phenotypes. Taking advantage of both inter- and intrabreed variability, we identified distinct mutations in three genes, RSPO2, FGF5, and KRT71 (encoding R-spondin–2, fibroblast growth factor–5, and keratin-71, respectively), that together account for most coat phenotypes in purebred dogs in the United States. Thus, an array of varied and seemingly complex phenotypes can be reduced to the combinatorial effects of only a few genes.
doi:10.1126/science.1177808
PMCID: PMC2897713  PMID: 19713490
3.  An Expressed Fgf4 Retrogene Is Associated with Breed-Defining Chondrodysplasia in Domestic Dogs 
Science (New York, N.Y.)  2009;325(5943):995-998.
Retrotransposition of processed mRNAs is a frequent source of novel sequence acquired during the evolution of genomes. The vast majority of retroposed gene copies are inactive pseudogenes that rapidly acquire mutations that disrupt the reading frame, while precious few are conserved to become new genes. Utilizing a multi-breed association analysis in the domestic dog, we demonstrate that a recently acquired fgf4 retrogene causes chondrodysplasia, a short-legged phenotype that defines several common dog breeds including the dachshund, corgi and basset hound. The discovery that a single evolutionary event underlies a breed-defining phenotype for 19 diverse dog breeds demonstrates the importance of unique mutational events in constraining and directing phenotypic diversity in the domestic dog.
doi:10.1126/science.1173275
PMCID: PMC2748762  PMID: 19608863
4.  Visual sensitivities tuned by heterochronic shifts in opsin gene expression 
BMC Biology  2008;6:22.
Background
Cichlid fishes have radiated into hundreds of species in the Great Lakes of Africa. Brightly colored males display on leks and vie to be chosen by females as mates. Strong discrimination by females causes differential male mating success, rapid evolution of male color patterns and, possibly, speciation. In addition to differences in color pattern, Lake Malawi cichlids also show some of the largest known shifts in visual sensitivity among closely related species. These shifts result from modulated expression of seven cone opsin genes. However, the mechanisms for this modulated expression are unknown.
Results
In this work, we ask whether these differences might result from changes in developmental patterning of cone opsin genes. To test this, we compared the developmental pattern of cone opsin gene expression of the Nile tilapia, Oreochromis niloticus, with that of several cichlid species from Lake Malawi. In tilapia, quantitative polymerase chain reaction showed that opsin gene expression changes dynamically from a larval gene set through a juvenile set to a final adult set. In contrast, Lake Malawi species showed one of two developmental patterns. In some species, the expressed gene set changes slowly, either retaining the larval pattern or progressing only from larval to juvenile gene sets (neoteny). In the other species, the same genes are expressed in both larvae and adults but correspond to the tilapia adult genes (direct development).
Conclusion
Differences in visual sensitivities among species of Lake Malawi cichlids arise through heterochronic shifts relative to the ontogenetic pattern of the tilapia outgroup. Heterochrony has previously been shown to be a powerful mechanism for change in morphological evolution. We found that altering developmental expression patterns is also an important mechanism for altering sensory systems. These resulting sensory shifts will have major impacts on visual communication and could help drive cichlid speciation.
doi:10.1186/1741-7007-6-22
PMCID: PMC2430543  PMID: 18500997

Results 1-4 (4)