PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (35)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  A genome-wide association study of marginal zone lymphoma shows association to the HLA region 
Vijai, Joseph | Wang, Zhaoming | Berndt, Sonja I. | Skibola, Christine F. | Slager, Susan L. | de Sanjose, Silvia | Melbye, Mads | Glimelius, Bengt | Bracci, Paige M. | Conde, Lucia | Birmann, Brenda M. | Wang, Sophia S. | Brooks-Wilson, Angela R. | Lan, Qing | de Bakker, Paul I. W. | Vermeulen, Roel C. H. | Portlock, Carol | Ansell, Stephen M. | Link, Brian K. | Riby, Jacques | North, Kari E. | Gu, Jian | Hjalgrim, Henrik | Cozen, Wendy | Becker, Nikolaus | Teras, Lauren R. | Spinelli, John J. | Turner, Jenny | Zhang, Yawei | Purdue, Mark P. | Giles, Graham G. | Kelly, Rachel S. | Zeleniuch-Jacquotte, Anne | Ennas, Maria Grazia | Monnereau, Alain | Bertrand, Kimberly A. | Albanes, Demetrius | Lightfoot, Tracy | Yeager, Meredith | Chung, Charles C. | Burdett, Laurie | Hutchinson, Amy | Lawrence, Charles | Montalvan, Rebecca | Liang, Liming | Huang, Jinyan | Ma, Baoshan | Villano, Danylo J. | Maria, Ann | Corines, Marina | Thomas, Tinu | Novak, Anne J. | Dogan, Ahmet | Liebow, Mark | Thompson, Carrie A. | Witzig, Thomas E. | Habermann, Thomas M. | Weiner, George J. | Smith, Martyn T. | Holly, Elizabeth A. | Jackson, Rebecca D. | Tinker, Lesley F. | Ye, Yuanqing | Adami, Hans-Olov | Smedby, Karin E. | De Roos, Anneclaire J. | Hartge, Patricia | Morton, Lindsay M. | Severson, Richard K. | Benavente, Yolanda | Boffetta, Paolo | Brennan, Paul | Foretova, Lenka | Maynadie, Marc | McKay, James | Staines, Anthony | Diver, W. Ryan | Vajdic, Claire M. | Armstrong, Bruce K. | Kricker, Anne | Zheng, Tongzhang | Holford, Theodore R. | Severi, Gianluca | Vineis, Paolo | Ferri, Giovanni M. | Ricco, Rosalia | Miligi, Lucia | Clavel, Jacqueline | Giovannucci, Edward | Kraft, Peter | Virtamo, Jarmo | Smith, Alex | Kane, Eleanor | Roman, Eve | Chiu, Brian C. H. | Fraumeni, Joseph F. | Wu, Xifeng | Cerhan, James R. | Offit, Kenneth | Chanock, Stephen J. | Rothman, Nathaniel | Nieters, Alexandra
Nature Communications  2015;6:5751.
Marginal zone lymphoma (MZL) is the third most common subtype of B-cell non-Hodgkin lymphoma. Here we perform a two-stage GWAS of 1,281 MZL cases and 7,127 controls of European ancestry and identify two independent loci near BTNL2 (rs9461741, P=3.95 × 10−15) and HLA-B (rs2922994, P=2.43 × 10−9) in the HLA region significantly associated with MZL risk. This is the first evidence that genetic variation in the major histocompatibility complex influences MZL susceptibility.
Marginal zone lymphoma (MZL) is a common subtype of B-cell non-Hodgkin lymphoma. Here the authors carry out a two-stage genome-wide association study in over 8,000 Europeans and identify two new MZL risk loci at chromosome 6p, implicating the major histocompatibility complex in the disease for the first time.
doi:10.1038/ncomms6751
PMCID: PMC4287989  PMID: 25569183
2.  eALPS: Estimating Abundance Levels in Pooled Sequencing Using Available Genotyping Data 
Journal of Computational Biology  2013;20(11):861-877.
Abstract
The recent advances in high-throughput sequencing technologies bring the potential of a better characterization of the genetic variation in humans and other organisms. In many occasions, either by design or by necessity, the sequencing procedure is performed on a pool of DNA samples with different abundances, where the abundance of each sample is unknown. Such a scenario is naturally occurring in the case of metagenomics analysis where a pool of bacteria is sequenced, or in the case of population studies involving DNA pools by design. Particularly, various pooling designs were recently suggested that can identify carriers of rare alleles in large cohorts, dramatically reducing the cost of such large-scale sequencing projects. A fundamental problem with such approaches for population studies is that the uncertainty of DNA proportions from different individuals in the pools might lead to spurious associations. Fortunately, it is often the case that the genotype data of at least some of the individuals in the pool is known. Here, we propose a method (eALPS) that uses the genotype data in conjunction with the pooled sequence data in order to accurately estimate the proportions of the samples in the pool, even in cases where not all individuals in the pool were genotyped (eALPS-LD). Using real data from a sequencing pooling study of non-Hodgkin's lymphoma, we demonstrate that the estimation of the proportions is crucial, since otherwise there is a risk for false discoveries. Additionally, we demonstrate that our approach is also applicable to the problem of quantification of species in metagenomics samples (eALPS-BCR) and is particularly suitable for metagenomic quantification of closely related species.
doi:10.1089/cmb.2013.0105
PMCID: PMC4013753  PMID: 24144111
algorithms; alignment; cancer genomics; NP-completeness
3.  Copy Number Variation Analysis on a Non-Hodgkin Lymphoma Case-Control Study Identifies an 11q25 Duplication Associated with Diffuse Large B-Cell Lymphoma 
PLoS ONE  2014;9(8):e105382.
Recent GWAS have identified several susceptibility loci for NHL. Despite these successes, much of the heritable variation in NHL risk remains to be explained. Common copy-number variants are important genomic sources of variability, and hence a potential source to explain part of this missing heritability. In this study, we carried out a CNV analysis using GWAS data from 681 NHL cases and 749 controls to explore the relationship between common structural variation and lymphoma susceptibility. Here we found a novel association with diffuse large B-cell lymphoma (DLBCL) risk involving a partial duplication of the C-terminus region of the LOC283177 long non-coding RNA that was further confirmed by quantitative PCR. For chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), known somatic deletions were identified on chromosomes 13q14, 11q22-23, 14q32 and 22q11.22. Our study shows that GWAS data can be used to identify germline CNVs associated with disease risk for DLBCL and somatic CNVs for CLL/SLL.
doi:10.1371/journal.pone.0105382
PMCID: PMC4136881  PMID: 25133503
4.  Tumor Necrosis Factor (TNF) and Lymphotoxin-α (LTA) Polymorphisms and Risk of Non-Hodgkin Lymphoma in the InterLymph Consortium 
American Journal of Epidemiology  2010;171(3):267-276.
In an International Lymphoma Epidemiology Consortium pooled analysis, polymorphisms in 2 immune-system-related genes, tumor necrosis factor (TNF) and interleukin-10 (IL10), were associated with non-Hodgkin lymphoma (NHL) risk. Here, 8,847 participants were added to previous data (patients diagnosed from 1989 to 2005 in 14 case-control studies; 7,999 cases, 8,452 controls) for testing of polymorphisms in the TNF –308G>A (rs1800629), lymphotoxin-α (LTA) 252A>G (rs909253), IL10 –3575T>A (rs1800890, rs1800896), and nucleotide-binding oligomerization domain containing 2 (NOD2) 3020insC (rs2066847) genes. Odds ratios were estimated for non-Hispanic whites and several ethnic subgroups using 2-sided tests. Consistent with previous findings, odds ratios were increased for “new” participant TNF –308A carriers (NHL: per-allele odds ratio (ORallelic) = 1.10, Ptrend = 0.001; diffuse large B-cell lymphoma (DLBCL): ORallelic = 1.23, Ptrend = 0.004). In the combined population, odds ratios were increased for TNF –308A carriers (NHL: ORallelic = 1.13, Ptrend = 0.0001; DLBCL: ORallelic = 1.25, Ptrend = 3.7 × 10−6; marginal zone lymphoma: ORallelic = 1.35, Ptrend = 0.004) and LTA 252G carriers (DLBCL: ORallelic = 1.12, Ptrend = 0.006; mycosis fungoides: ORallelic = 1.44, Ptrend = 0.015). The LTA 252A>G/TNF –308G>A haplotype containing the LTA/TNF variant alleles was strongly associated with DLBCL (P = 2.9 × 10−8). Results suggested associations between IL10 –3575T>A and DLBCL (Ptrend = 0.02) and IL10 –1082A>G and mantle cell lymphoma (Ptrend = 0.04). These findings strengthen previous results for DLBCL and the LTA 252A>G/TNF –308A locus and provide robust evidence that these TNF/LTA gene variants, or others in linkage disequilibrium, are involved in NHL etiology.
doi:10.1093/aje/kwp383
PMCID: PMC2842204  PMID: 20047977
lymphoma; lymphoma, non-Hodgkin; lymphotoxin-alpha; meta-analysis; polymorphism, genetic; polymorphism, single nucleotide; tumor necrosis factor-alpha
5.  Genome-wide Association Study Identifies Multiple Risk Loci for Chronic Lymphocytic Leukemia 
Berndt, Sonja I. | Skibola, Christine F. | Joseph, Vijai | Camp, Nicola J. | Nieters, Alexandra | Wang, Zhaoming | Cozen, Wendy | Monnereau, Alain | Wang, Sophia S. | Kelly, Rachel S. | Lan, Qing | Teras, Lauren R. | Chatterjee, Nilanjan | Chung, Charles C. | Yeager, Meredith | Brooks-Wilson, Angela R. | Hartge, Patricia | Purdue, Mark P. | Birmann, Brenda M. | Armstrong, Bruce K. | Cocco, Pierluigi | Zhang, Yawei | Severi, Gianluca | Zeleniuch-Jacquotte, Anne | Lawrence, Charles | Burdette, Laurie | Yuenger, Jeffrey | Hutchinson, Amy | Jacobs, Kevin B. | Call, Timothy G. | Shanafelt, Tait D. | Novak, Anne J. | Kay, Neil E. | Liebow, Mark | Wang, Alice H. | Smedby, Karin E | Adami, Hans-Olov | Melbye, Mads | Glimelius, Bengt | Chang, Ellen T. | Glenn, Martha | Curtin, Karen | Cannon-Albright, Lisa A. | Jones, Brandt | Diver, W. Ryan | Link, Brian K. | Weiner, George J. | Conde, Lucia | Bracci, Paige M. | Riby, Jacques | Holly, Elizabeth A. | Smith, Martyn T. | Jackson, Rebecca D. | Tinker, Lesley F. | Benavente, Yolanda | Becker, Nikolaus | Boffetta, Paolo | Brennan, Paul | Foretova, Lenka | Maynadie, Marc | McKay, James | Staines, Anthony | Rabe, Kari G. | Achenbach, Sara J. | Vachon, Celine M. | Goldin, Lynn R | Strom, Sara S. | Lanasa, Mark C. | Spector, Logan G. | Leis, Jose F. | Cunningham, Julie M. | Weinberg, J. Brice | Morrison, Vicki A. | Caporaso, Neil E. | Norman, Aaron D. | Linet, Martha S. | De Roos, Anneclaire J. | Morton, Lindsay M. | Severson, Richard K. | Riboli, Elio | Vineis, Paolo | Kaaks, Rudolph | Trichopoulos, Dimitrios | Masala, Giovanna | Weiderpass, Elisabete | Chirlaque, María-Dolores | Vermeulen, Roel C H | Travis, Ruth C. | Giles, Graham G. | Albanes, Demetrius | Virtamo, Jarmo | Weinstein, Stephanie | Clavel, Jacqueline | Zheng, Tongzhang | Holford, Theodore R | Offit, Kenneth | Zelenetz, Andrew | Klein, Robert J. | Spinelli, John J. | Bertrand, Kimberly A. | Laden, Francine | Giovannucci, Edward | Kraft, Peter | Kricker, Anne | Turner, Jenny | Vajdic, Claire M. | Ennas, Maria Grazia | Ferri, Giovanni M. | Miligi, Lucia | Liang, Liming | Sampson, Joshua | Crouch, Simon | Park, Ju-hyun | North, Kari E. | Cox, Angela | Snowden, John A. | Wright, Josh | Carracedo, Angel | Lopez-Otin, Carlos | Bea, Silvia | Salaverria, Itziar | Martin, David | Campo, Elias | Fraumeni, Joseph F. | de Sanjose, Silvia | Hjalgrim, Henrik | Cerhan, James R. | Chanock, Stephen J. | Rothman, Nathaniel | Slager, Susan L.
Nature genetics  2013;45(8):868-876.
doi:10.1038/ng.2652
PMCID: PMC3729927  PMID: 23770605
6.  Smoking, variation in N-acetyltransferase 1 (NAT1) and 2 (NAT2), and risk of non-Hodgkin lymphoma: a pooled analysis within the InterLymph consortium 
Cancer causes & control : CCC  2012;24(1):125-134.
Purpose
Studies of smoking and risk of non-Hodgkin lymphoma (NHL) have yielded inconsistent results, possibly due to subtype heterogeneity and/or genetic variation impacting the metabolism of tobacco-derived carcinogens, including substrates of the N-acetyltransferase enzymes NAT1 and NAT2.
Methods
We conducted a pooled analysis of 5,026 NHL cases and 4,630 controls from seven case–control studies in the international lymphoma epidemiology consortium to examine associations between smoking, variation in the N-acetyltransferase genes NAT1 and NAT2, and risk of NHL subtypes. Smoking data were harmonized across studies, and genetic variants in NAT1 and NAT2 were used to infer acetylation phenotype of the NAT1 and NAT2 enzymes, respectively. Pooled odds ratios (ORs) and 95 % confidence intervals (95 % CIs) for risk of NHL and subtypes were calculated using joint fixed effects unconditional logistic regression models.
Results
Current smoking was associated with a significant 30 % increased risk of follicular lymphoma (n = 1,176) but not NHL overall or other NHL subtypes. The association was similar among NAT2 slow (OR 1.36; 95 % CI 1.07–1.75) and intermediate/rapid (OR 1.27; 95 % CI 0.95–1.69) acetylators (pinteraction = 0.82) and also did not differ by NAT1*10 allelotype. Neither NAT2 phenotype nor NAT1*10 allelotype was associated with risk of NHL overall or NHL subtypes.
Conclusion
The current findings provide further evidence for a modest association between current smoking and follicular lymphoma risk and suggest that this association may not be influenced by variation in the N-acetyltransferase enzymes.
doi:10.1007/s10552-012-0098-4
PMCID: PMC3529854  PMID: 23160945
Non-Hodgkin lymphoma; Gene environment interaction; Cigarette smoking; N-acetyltransferase; Follicular lymphoma
7.  Differential Gene Expression Landscape of Co-Existing Cervical Pre-Cancer Lesions Using RNA-seq 
Frontiers in Oncology  2014;4:339.
Genetic changes occurring in different stages of pre-cancer lesions reflect causal events initiating and promoting the progression to cancer. Co-existing pre-cancerous lesions including low- and high-grade squamous intraepithelial lesion (LGSIL and HGSIL), and adjacent “normal” cervical epithelium from six formalin-fixed paraffin-embedded samples were selected. Tissues from these 18 samples were isolated using laser-capture microdissection, RNA was extracted and sequenced. RNA-sequencing generated 2.4 billion raw reads in 18 samples, of which ~50.1% mapped to known and annotated genes in the human genome. There were 40 genes up-regulated and 3 down-regulated (normal to LGSIL) in at least one-third of the sample pairs (same direction and FDR p < 0.05) including S100A7 and KLK6. Previous studies have shown that S110A7 and KLK7 are up-regulated in several other cancers, whereas CCL18, CFTR, and SLC6A14, also differentially expressed in two samples, are up-regulated specifically in cervical cancer. These differentially expressed genes in normal to LGSIL progression were enriched in pathways related to epithelial cell differentiation, keratinocyte differentiation, peptidase, and extracellular activities. In progression from LGSIL to HGSIL, two genes were up-regulated and five down-regulated in at least two samples. Further investigations using co-existing samples, which account for all internal confounders, will provide insights to better understand progression of cervical pre-cancer.
doi:10.3389/fonc.2014.00339
PMCID: PMC4244708  PMID: 25505737
RNA-sequencing; gene expression; cervical dysplasia; co-existing lesions; human genome
8.  A Generic Coalescent-based Framework for the Selection of a Reference Panel for Imputation 
Genetic epidemiology  2010;34(8):10.1002/gepi.20505.
An important component in the analysis of genome-wide association studies involves the imputation of genotypes that have not been measured directly in the studied samples. The imputation procedure uses the linkage disequilibrium (LD) structure in the population to infer the genotype of an unobserved single nucleotide polymorphism. The LD structure is normally learned from a dense genotype map of a reference population that matches the studied population. In many instances there is no reference population that exactly matches the studied population, and a natural question arises as to how to choose the reference population for the imputation. Here we present a Coalescent-based method that addresses this issue. In contrast to the current paradigm of imputation methods, our method assigns a different reference dataset for each sample in the studied population, and for each region in the genome. This allows the flexibility to account for the diversity within populations, as well as across populations. Furthermore, because our approach treats each region in the genome separately, our method is suitable for the imputation of recently admixed populations. We evaluated our method across a large set of populations and found that our choice of reference data set considerably improves the accuracy of imputation, especially for regions with low LD and for populations without a reference population available as well as for admixed populations such as the Hispanic population. Our method is generic and can potentially be incorporated in any of the available imputation methods as an add-on.
doi:10.1002/gepi.20505
PMCID: PMC3876740  PMID: 21058333
genotype imputation; coalescent; GWAS; linkage disequilibrium; weighted panel
9.  A functional TNFRSF5 polymorphism and risk of non-Hodgkin lymphoma, a pooled analysis 
Interaction between CD40 and its ligand, CD154, has a key function in immune regulation. Recent experimental data support a role of deregulated CD40 signalling in lymphomagenesis. Data from earlier studies that are part of this pooling study implicate a functional polymorphism (−1C>T, rs1883832) in the TNFRSF5 gene encoding CD40 in the etiology of follicular lymphoma. Here, the association of this variant with non-Hodgkin lymphoma (NHL) risk was replicated in a European multicenter study of 855 NHL cases and 1,206 controls. In the combined analysis of 2,617 cases and 3,605 controls, carrying the TT genotype was associated with an increased risk for all NHL (OR = 1.4; p for linear trend = 0.00009), diffuse large B-cell lymphoma (OR = 1.6; p for linear trend = 0.002) and follicular lymphoma (OR = 1.6; p for linear trend = 0.001). These data suggest a possible role of this functional polymorphism in lymphomas originating within the germinal center.
doi:10.1002/ijc.25420
PMCID: PMC3876741  PMID: 20473910
lymphoma; TNFRSF5; CD40; polymorphism; epidemiology
10.  Individual Differences in Arsenic Metabolism and Lung Cancer in a Case-Control Study in Cordoba, Argentina 
Toxicology and applied pharmacology  2010;247(2):10.1016/j.taap.2010.06.006.
In humans, ingested inorganic arsenic is metabolized to monomethylarsenic (MMA) then to dimethylarsenic (DMA), although in most people this process is not complete. Previous studies have identified associations between the proportion of urinary MMA (%MMA) and increased risks of several arsenic-related diseases, although none of these reported on lung cancer. In this study, urinary arsenic metabolites were assessed in 45 lung cancer cases and 75 controls from arsenic-exposed areas in Cordoba, Argentina. Folate has also been linked to arsenic-disease susceptibility, thus an exploratory assessment of associations between single nucleotide polymorphisms in folate metabolizing genes, arsenic methylation, and lung cancer was also conducted. In analyses limited to subjects with metabolite concentrations above detection limits, the mean %MMA was higher in cases than in controls (17.5% versus 14.3%, p = 0.01). The lung cancer odds ratios for subjects with %MMA in the upper tertile compared to those in the lowest tertile was 3.09 (95% CI, 1.08–8.81). Although the study size was too small for a definitive conclusion, there was an indication that lung cancer risks might be highest in those with a high %MMA who also carried cystathionine β-synthase (CBS) rs234709 and rs4920037 variant alleles. This study is the first to report an association between individual differences in arsenic metabolism and lung cancer, a leading cause of arsenic-related mortality. These results add to the increasing body of evidence that variation in arsenic metabolism plays an important role in arsenic-disease susceptibility.
doi:10.1016/j.taap.2010.06.006
PMCID: PMC3849353  PMID: 20600216
arsenic; lung cancer; drinking water; metabolism
11.  Common variants within 6p21.31 locus are associated with chronic lymphocytic leukaemia and potentially other non-Hodgkin lymphoma subtypes 
British journal of haematology  2012;159(5):572-576.
Summary
A recent meta-analysis of three genome-wide association studies of chronic lymphocytic leukaemia (CLL) identified two common variants at the 6p21.31 locus that are associated with CLL risk. To verify and further explore the association of these variants with other non-Hodgkin lymphoma (NHL) subtypes, we genotyped 1196 CLL cases, 1699 NHL cases, and 2410 controls. We found significant associations between the 6p21.31 variants and CLL risk (rs210134: P=0.01; rs210142: P=6.8×10−3). These variants also showed a trend towards association with some of the other NHL subtypes. Our results validate the prior work and support specific genetic pathways for risk among NHL subtypes.
doi:10.1111/bjh.12070
PMCID: PMC3614403  PMID: 23025533
CLL; NHL; SNPs; BAK1; risk locus
12.  Non-Hodgkin Lymphoma Risk and Variants in Genes Controlling Lymphocyte Development 
PLoS ONE  2013;8(9):e75170.
Non-Hodgkin lymphomas (NHL) are a heterogeneous group of solid tumours of lymphoid cell origin. Three important aspects of lymphocyte development include immunity and inflammation, DNA repair, and programmed cell death. We have used a previously established case-control study of NHL to ask whether genetic variation in genes involved in these three important processes influences risk of this cancer. 118 genes in these three categories were tagged with single nucleotide polymorphisms (SNPs), which were tested for association with NHL and its subtypes. The main analysis used logistic regression (additive model) to estimate odds ratios in European-ancestry cases and controls. 599 SNPs and 1116 samples (569 cases and 547 controls) passed quality control measures and were included in analyses. Following multiple-testing correction, one SNP in MSH3, a mismatch repair gene, showed an association with diffuse large B-cell lymphoma (OR: 1.91; 95% CI: 1.41–2.59; uncorrected p = 0.00003; corrected p = 0.010). This association was not replicated in an independent European-ancestry sample set of 251 diffuse large B-cell lymphoma cases and 737 controls, indicating this result was likely a false positive. It is likely that moderate sample size, inter-subtype and other genetic heterogeneity, and small true effect sizes account for the lack of replicable findings.
doi:10.1371/journal.pone.0075170
PMCID: PMC3787098  PMID: 24098683
13.  Sex- and Subtype-Specific Analysis of H2AFX Polymorphisms in Non-Hodgkin Lymphoma 
PLoS ONE  2013;8(9):e74619.
H2AFX encodes a histone variant involved in signaling sites of DNA damage and recruiting repair factors. Genetic variants in H2AFX may influence risk of non-Hodgkin lymphoma (NHL), a heterogeneous group of lymphoid tumors that are characterized by chromosomal translocations. We previously reported that rs2509049, a common variant in the promoter of H2AFX, was associated with risk for NHL in the British Columbia population. Here we report results for 13 single nucleotide polymorphisms (SNPs) in 100 Kb surrounding H2AFX in an expanded collection of 568 NHL cases and 547 controls. After correction for multiple testing, significant associations were present for mantle cell lymphoma (p=0.007 for rs604714) and all B-cell lymphomas (p=0.046 for rs2509049). Strong linkage disequilibrium in the 5 Kb upstream of H2AFX limited the ability to determine which specific SNP (rs2509049, rs7759, rs8551, rs643788, rs604714, or rs603826), if any, was responsible. There was a significant interaction between sex and rs2509049 in the all B-cell lymphomas group (p=0.002); a sex-stratified analysis revealed that the association was confined to females (p=0.001). Neither the overall nor the female-specific association with rs2509049 was replicated in any of four independent NHL sample sets. Meta-analysis of all five study populations (3,882 B-cell NHL cases and 3,718 controls) supported a weak association with B-cell lymphoma (OR=0.92, 95% CI=0.86-0.99, p=0.034), although this association was not significant after exclusion of the British Columbia data. Further research into the potential sex-specificity of the H2AFX-NHL association may identify a subset of NHL cases that are influenced by genotype at this locus.
doi:10.1371/journal.pone.0074619
PMCID: PMC3775730  PMID: 24069324
14.  Arsenic immunotoxicity: a review 
Environmental Health  2013;12:73.
Exposure to arsenic (As) is a global public health problem because of its association with various cancers and numerous other pathological effects, and millions of people worldwide are exposed to As on a regular basis. Increasing lines of evidence indicate that As may adversely affect the immune system, but its specific effects on immune function are poorly understood. Therefore, we conducted a literature search of non-cancer immune-related effects associated with As exposure and summarized the known immunotoxicological effects of As in humans, animals and in vitro models. Overall, the data show that chronic exposure to As has the potential to impair vital immune responses which could lead to increased risk of infections and chronic diseases, including various cancers. Although animal and in vitro models provide some insight into potential mechanisms of the As-related immunotoxicity observed in human populations, further investigation, particularly in humans, is needed to better understand the relationship between As exposure and the development of disease.
doi:10.1186/1476-069X-12-73
PMCID: PMC3848751  PMID: 24004508
Arsenic; Immune system; Immunotoxicity; Immunocompromised; Immunosuppression
15.  A comprehensive study of polymorphisms in the ABCB1, ABCC2, ABCG2, NR1I2 genes and lymphoma risk 
Owing to their role in controlling the efflux of toxic compounds, transporters are central players in the process of detoxification and elimination of xenobiotics, which in turn is related to cancer risk. Among these transporters, ATP-binding cassette B1/multidrug resistance 1 (ABCB1/MDR1), ABCC2/multidrug resistance protein 2 (MRP2), and ABCG2/breast cancer resistance protein (BCRP) affect susceptibility to many hematopoietic malignancies. The maintenance of regulated expression of these transporters is governed through the activation of intracellular “xenosensors” like the nuclear receptor 1I2/pregnane X receptor (NR1I2/PXR). SNPs in genes encoding these regulators have also been implicated in the risk of several cancers. Using a tagging approach, we tested the hypothesis that common polymorphisms in the transporter genes ABCB1, ABCC2, ABCG2, and the regulator gene NR1I2 could be implicated in lymphoma risk. We selected 68 SNPs in the 4 genes, and we genotyped them in 1,481 lymphoma cases and 1,491 controls of the European cases-control study (EpiLymph) using the Illumina™ GoldenGate assay technology.Carriers of the SNP rs6857600 minor allele in ABCG2, was associated with a decrease in risk of B-cell lymphoma (B-NHL) overall (p<0.001). Furthermore, a decreased risk of chronic lymphocytic leukemia (CLL) was associated with the ABCG2 rs2231142 variant (p=0.0004), which could be replicated in an independent population. These results suggest a role for this gene in B-NHL susceptibility, especially for CLL.
doi:10.1002/ijc.26436
PMCID: PMC3432449  PMID: 21918980
Lymphoma; multidrug resistance 1 (MDR1); multidrug resistance protein 2 (MRP2); breast cancer resistance protein (BCRP); pregnane X receptor (PXR)
16.  Multi-locus HLA class I and II allele and haplotype associations with follicular lymphoma 
Tissue Antigens  2012;79(4):279-286.
Follicular lymphoma (FL) is an indolent, sometimes fatal disease characterized by recurrence at progressively shorter intervals and is frequently refractive to therapy. Genome-wide association studies have identified SNPs in the human leukocyte antigen (HLA) region on chromosome 6p21.32–33 that are statistically significantly associated with FL risk. Low to medium resolution typing of single or multiple HLA genes has provided an incomplete picture of the total genetic risk imparted by this highly variable region. To gain further insight into the role of HLA alleles in lymphomagenesis and to investigate the independence of validated SNPs and HLA alleles with FL risk, high-resolution HLA typing was conducted using next-generation sequencing in 222 non-Hispanic white FL cases and 220 matched controls from a larger San Francisco Bay Area population-based case-control study of lymphoma. A novel protective association was found between the DPB1*03:01 allele and FL risk (OR=0.39, 95% CI 0.21–0.68). Extended haplotypes DRB1*01:01-DQA1*01:01-DQB1*05:01 (OR=2.01, 95% CI 1.22–3.38) and DRB1*15-DQA1*01-DQB1*06 (OR=0.55, 95% CI 0.36–0.82) also influenced FL risk. Moreover, DRB1*15-DQA1*01-DQB1*06 was highly correlated with an established FL risk locus, rs2647012. These results provide further insight into the critical roles of HLA alleles and SNPs in FL pathogenesis that involve multi-locus effects across the HLA region.
doi:10.1111/j.1399-0039.2012.01845.x
PMCID: PMC3293942  PMID: 22296171
follicular lymphoma; HLA; genetic risk factors; next-generation sequencing
17.  Benzene, the Exposome and Future Investigations of Leukemia Etiology 
Chemico-biological interactions  2011;192(1-2):155-159.
Benzene exposure is associated with acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), and probably lymphoma and childhood leukemia. Biological plausibility for a causal role of benzene in these diseases comes from its toxicity to hematopoietic stem cells (HSC) or progenitor cells, from which all leukemias and related disorders arise. The effect of this toxicity is manifest as lowered blood counts (hematotoxicity), even in individuals occupationally exposed to low levels of benzene. Benzene can induce AML/MDS via several well-characterized pathways associated with these diseases. Through its metabolites, benzene induces multiple alterations that likely contribute to the leukemogenic process, and appears to operate via multiple modes of action. To improve mechanistic understanding and for risk assessment purposes, it may be possible to measure several of the key events in these modes of action in an in vitro model of the bone marrow stem cell niche. Even though benzene is leukemogenic at relatively low occupational levels of exposure, it seems unlikely that it is a major cause of leukemia in the general population exposed to benzene in the ppb range. Other established non-genetic causes of AML, e.g. smoking, ionizing radiation and cancer chemotherapy, also only explain about 20% of AML incidence, leaving ~80% unexplained. The question arises as to how to find the causes of the majority of de novo AMLs that remain unexplained. We propose that we should attempt to characterize the ‘exposome’ of human leukemia by using unbiased laboratory-based methods to find the unknown ‘environmental’ factors that contribute to leukemia etiology.
doi:10.1016/j.cbi.2011.02.010
PMCID: PMC3461963  PMID: 21333640
Benzene; leukemia; myeloid; AML; mode of action; mechanism; blood; biomarker; metabolism; hydroquinone; stem cell niche
18.  A meta-analysis of genome-wide association studies of follicular lymphoma 
BMC Genomics  2012;13:516.
Background
B-cell non-Hodgkin lymphoma represents a diverse group of hematological malignancies, of which follicular lymphoma (FL) is one of the most common subtypes. Family and epidemiological studies suggest an important genetic role in the etiology of FL. In recent genome-wide association studies (GWAS) of FL, several genetic susceptibility loci have been identified on chromosome 6p21.33 (rs6457327) and 6p21.32 (rs10484561, rs2647012) in the human leukocyte antigen class I and class II regions. To identify new genetic variants and further elucidate the genetic basis of FL, a meta-analysis was performed of the top 1000 SNPs associated with FL risk from two GWAS in the US, Denmark and Sweden (592 cases, 1541 controls), with independent validation in 107 cases and 681 controls.
Results
rs9275517 and rs3117222 in the HLA class II region were validated and inversely associated with FL risk (rs9275517: OR = 0.63, 95% CI = 0.55-0.73, p = 4.03 × 10-11; rs3117222: OR = 0.66, 95% CI = 0.57-0.77, p = 1.45 × 10-7). rs9275517, which is in high linkage disequilibrium with rs2647012 (r2 = 0.9), was no longer associated with FL after conditioning on rs2647012. The rs3117222 association was independent of established FL SNPs, but not of the HLA-DPB1*0301 allele. Using publicly available gene expression profiles with matching genotype information, we found that rs3117222 also was significantly correlated with increased HLA-DPB1 expression.
Conclusions
By performing a meta-analysis of two GWAS of FL, we further validated the relevance of HLA-DPB1*0301 as a protective allele in the pathogenesis of FL. Moreover, the protective rs3117222 A allele correlated with increased levels of HLA-DPB1, suggesting a possible disease mechanism involving HLA-DPB1 expression regulation. Our results add further support to the major role of HLA genetic variation in the pathogenesis of FL.
doi:10.1186/1471-2164-13-516
PMCID: PMC3534234  PMID: 23025665
Follicular lymphoma (FL); Genome-wide association studies (GWAS); Human leukocyte antigen (HLA); Meta-analysis
19.  Chemokine polymorphisms and lymphoma: a pooled analysis 
Leukemia & lymphoma  2010;51(3):497-506.
Polymorphisms in chemokine genes have been associated with human immunodeficiency virus (HIV)-related non-Hodgkin lymphoma (NHL) but are understudied in non-HIV-related NHL. Associations of NHL and NHL subtypes with polymorphisms and haplotypes in CCR5, CCR2, CCL5, CXCL12 and CX3CR1 were explored in a pooled analysis of three case-control studies (San Francisco Bay Area, California; United Kingdom; total: cases N=1610, controls N=1992). Adjusted unconditional logistic regression was used to estimate relative risks among HIV-negative non-Hispanic Caucasians. The CCR5M Δ32 deletion reduced the risk of NHL (odds ratio=0.56, 95% confidence interval=0.38-0.83) in men but not women with similar effects observed for diffuse large-cell and follicular lymphoma (FL). NHL risk also was reduced in men with the CCR2/CCR5 haplotype characterized by the CCR5 Δ32 deletion. The CCL5 −403A allele conferred reduced risks of FL and chronic lymphocytic leukemia/small lymphocytic lymphoma. Results should be interpreted conservatively. Continued investigation is warranted to confirm these findings.
doi:10.3109/10428190903518337
PMCID: PMC3443685  PMID: 20038229
Lymphoma non-Hodgkin; Chemokines; Polymorphism, genetic; Case-Control
20.  Multiplexed, ligation-dependent probe amplification for rapid and inexpensive HLA-DQB1 allelotyping 
Tissue antigens  2011;78(4):275-280.
Many effective options exist to accurately type DNA for HLA alleles. However, most of the existing methods are excessively costly in terms of overall monetary costs, DNA requirements, and proprietary software. We present a novel assay able to resolve heterozygous HLA-DQB1 allelotypes at two digits, with even greater specificity for the HLA-DQB1*06 allele family, by using the multiplexed ligation-dependent probe amplification (MLPA) technology. This assay provides more specific allele data than genome-wide analysis and is more affordable than sequencing, making it a useful intermediate for researchers seeking to accurately allelotype human DNA samples.
doi:10.1111/j.1399-0039.2011.01737.x
PMCID: PMC3431962  PMID: 21762399
DQB1; genotyping; MHC class II; MLPA
21.  A search for overlapping susceptibility loci between non-Hodgkin lymphoma and autoimmune diseases 
Genomics  2011;98(1):9-14.
Non-Hodgkin lymphoma (NHL) is a hematological malignancy of the immune system, and, as with autoimmune and inflammatory diseases (ADs), is influenced by genetic variation in the major histocompatibility complex (MHC). Persons with a history of specific ADs also have increased risk of NHL. As the coexistence of ADs and NHL could be caused by factors common to both diseases, here we examined whether some of the associated genetic signals are shared. Overlapping risk loci for NHL subytpes and several ADs were explored using data from genome-wide association studies. Several common genomic regions and susceptibility loci were identified suggesting a potential shared genetic background. Two independent MHC regions showed the main overlap, with several alleles in the human leukocyte antigen (HLA) Class II region exhibiting an opposite risk effect for follicular lymphoma and type I diabetes. These results support continued investigation to further elucidate the relationship between lymphoma and autoimmune diseases.
doi:10.1016/j.ygeno.2011.03.007
PMCID: PMC3129413  PMID: 21439368
Non-Hodgkin lymphoma; Autoimmune diseases; Genome-wide Association Studies; Human Leukocyte Antigen
22.  Association of HLA-DQB1 alleles with risk of follicular lymphoma 
Leukemia & lymphoma  2010;52(1):53-58.
In a recent genome-wide association study of follicular lymphoma (FL), we identified novel risk alleles on chromosome 6p21.33 that appeared to be part of an extended haplotype including HLA-DRB1*0101, DQA1*0101, and DQB1*0501. To follow up on these findings, we obtained 2–4 digit HLA-DQB1 allelotypes on a subset of 265 FL cases and 757 controls using a novel assay that applies multiplexed ligation-dependent probe amplification (MLPA). We confirmed a positive association between FL and the HLA-DQB1*05 allele group (OR=1.70, 95% CI 1.28–2.27; adjusted p-value=0.013) and also identified an allele group inversely associated with FL risk, HLA-DQB1*06 (OR=0.51, 95% CI 0.38–0.69; adjusted p-value=4.46×10−5). Although these findings require verification, the role of HLA class II proteins in B-cell survival and proliferation make this a biologically plausible association.
doi:10.3109/10428194.2010.532888
PMCID: PMC3331678  PMID: 21133715
follicular lymphoma; MHC; HLA; DQ; NHL
23.  Post-GWAS Functional Characterization of Susceptibility Variants for Chronic Lymphocytic Leukemia 
PLoS ONE  2012;7(1):e29632.
Recent genome-wide association studies (GWAS) have identified several gene variants associated with sporadic chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL). Many of these CLL/SLL susceptibility loci are located in non-coding or intergenic regions, posing a significant challenge to determine their potential functional relevance. Here, we review the literature of all CLL/SLL GWAS and validation studies, and apply eQTL analysis to identify putatively functional SNPs that affect gene expression that may be causal in the pathogenesis of CLL/SLL. We tested 12 independent risk loci for their potential to alter gene expression through cis-acting mechanisms, using publicly available gene expression profiles with matching genotype information. Sixteen SNPs were identified that are linked to differential expression of SP140, a putative tumor suppressor gene previously associated with CLL/SLL. Three additional SNPs were associated with differential expression of DACT3 and GNG8, which are involved in the WNT/β-catenin- and G protein-coupled receptor signaling pathways, respectively, that have been previously implicated in CLL/SLL pathogenesis. Using in silico functional prediction tools, we found that 14 of the 19 significant eQTL SNPs lie in multiple putative regulatory elements, several of which have prior implications in CLL/SLL or other hematological malignancies. Although experimental validation is needed, our study shows that the use of existing GWAS data in combination with eQTL analysis and in silico methods represents a useful starting point to screen for putatively causal SNPs that may be involved in the etiology of CLL/SLL.
doi:10.1371/journal.pone.0029632
PMCID: PMC3250464  PMID: 22235315
24.  Association of Genetic Variation in Cystathionine-β-Synthase and Arsenic Metabolism 
Environmental research  2010;110(6):580-587.
Variation in individual susceptibility to arsenic-induced disease may be partially explained by genetic differences in arsenic metabolism. Mounting epidemiological evidence and in vitro studies suggest that methylated arsenic metabolites, particularly monomethylarsonic (MMA3), are more acutely toxic than inorganic arsenic; thus, MMA3 may be the primary toxic arsenic species. To test the role of genetic variation in arsenic metabolism, polymorphisms in genes involved in one-carbon metabolism [methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR), cystathionine-β-synthase (CBS), thymidylate synthase (TYMS), dihydrofolate reductase (DHFR), serine hydroxymethyltransferase 1 (SHMT1] and glutathione biosynthesis [glutathione S-transferase omega 1 (GSTO1)] were examined in an arsenic exposed population to determine their influence in urinary arsenic metabolite patterns. In 142 subjects in Cordoba Province, Argentina, variant genotypes for CBS rs234709 and rs4920037 SNPs compared with wild-type homozygotes were associated with 24% and 26% increases, respectively, in the mean proportion of arsenic excreted as monomethylarsonic acid (%MMA). This difference is within the range of differences in %MMA seen between people with arsenic-related disease and those without such disease in other studies. Small inverse associations with CBS rs234709 and rs4920037 variants were also found for the mean levels of the proportion of arsenic excreted as dimethylarsinous acid (%DMA). No other genetic associations were found. These findings are the first to suggest that CBS polymorphisms may influence arsenic metabolism in humans and susceptibility to arsenic-related disease.
doi:10.1016/j.envres.2010.05.001
PMCID: PMC2913479  PMID: 20670920
arsenic; polymorphism; cystathionine-β-synthase; CBS; SNP
25.  GWAS of Follicular Lymphoma Reveals Allelic Heterogeneity at 6p21.32 and Suggests Shared Genetic Susceptibility with Diffuse Large B-cell Lymphoma 
PLoS Genetics  2011;7(4):e1001378.
Non-Hodgkin lymphoma (NHL) represents a diverse group of hematological malignancies, of which follicular lymphoma (FL) is a prevalent subtype. A previous genome-wide association study has established a marker, rs10484561 in the human leukocyte antigen (HLA) class II region on 6p21.32 associated with increased FL risk. Here, in a three-stage genome-wide association study, starting with a genome-wide scan of 379 FL cases and 791 controls followed by validation in 1,049 cases and 5,790 controls, we identified a second independent FL–associated locus on 6p21.32, rs2647012 (ORcombined = 0.64, Pcombined = 2×10−21) located 962 bp away from rs10484561 (r2<0.1 in controls). After mutual adjustment, the associations at the two SNPs remained genome-wide significant (rs2647012:ORadjusted = 0.70, Padjusted = 4×10−12; rs10484561:ORadjusted = 1.64, Padjusted = 5×10−15). Haplotype and coalescence analyses indicated that rs2647012 arose on an evolutionarily distinct haplotype from that of rs10484561 and tags a novel allele with an opposite (protective) effect on FL risk. Moreover, in a follow-up analysis of the top 6 FL–associated SNPs in 4,449 cases of other NHL subtypes, rs10484561 was associated with risk of diffuse large B-cell lymphoma (ORcombined = 1.36, Pcombined = 1.4×10−7). Our results reveal the presence of allelic heterogeneity within the HLA class II region influencing FL susceptibility and indicate a possible shared genetic etiology with diffuse large B-cell lymphoma. These findings suggest that the HLA class II region plays a complex yet important role in NHL.
Author Summary
Earlier studies have established a marker rs10484561, in the HLA class II region on 6p21.32, associated with increased follicular lymphoma (FL) risk. Here, in a three-stage genome-wide association study of 1,428 FL cases and 6,581 controls, we identified a second independent FL–associated marker on 6p21.32, rs2647012, located 962 bp away from rs10484561. The associations at two SNPs remained genome-wide significant after mutual adjustment. Haplotype and coalescence analyses indicated that rs2647012 arose on an evolutionarily distinct lineage from that of rs10484561 and tags a novel allele with an opposite, protective effect on FL risk. Moreover, in an analysis of the top 6 FL–associated SNPs in 4,449 cases of other NHL subtypes, rs10484561 was associated with risk of diffuse large B-cell lymphoma. Our results reveal the presence of allelic heterogeneity at 6p21.32 in FL risk and suggest a shared genetic etiology with the common diffuse large B-cell lymphoma subtype.
doi:10.1371/journal.pgen.1001378
PMCID: PMC3080853  PMID: 21533074

Results 1-25 (35)