PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (37)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for 13 Cancer Types 
Sampson, Joshua N. | Wheeler, William A. | Yeager, Meredith | Panagiotou, Orestis | Wang, Zhaoming | Berndt, Sonja I. | Lan, Qing | Abnet, Christian C. | Amundadottir, Laufey T. | Figueroa, Jonine D. | Landi, Maria Teresa | Mirabello, Lisa | Savage, Sharon A. | Taylor, Philip R. | Vivo, Immaculata De | McGlynn, Katherine A. | Purdue, Mark P. | Rajaraman, Preetha | Adami, Hans-Olov | Ahlbom, Anders | Albanes, Demetrius | Amary, Maria Fernanda | An, She-Juan | Andersson, Ulrika | Andriole, Gerald | Andrulis, Irene L. | Angelucci, Emanuele | Ansell, Stephen M. | Arici, Cecilia | Armstrong, Bruce K. | Arslan, Alan A. | Austin, Melissa A. | Baris, Dalsu | Barkauskas, Donald A. | Bassig, Bryan A. | Becker, Nikolaus | Benavente, Yolanda | Benhamou, Simone | Berg, Christine | Van Den Berg, David | Bernstein, Leslie | Bertrand, Kimberly A. | Birmann, Brenda M. | Black, Amanda | Boeing, Heiner | Boffetta, Paolo | Boutron-Ruault, Marie-Christine | Bracci, Paige M. | Brinton, Louise | Brooks-Wilson, Angela R. | Bueno-de-Mesquita, H. Bas | Burdett, Laurie | Buring, Julie | Butler, Mary Ann | Cai, Qiuyin | Cancel-Tassin, Geraldine | Canzian, Federico | Carrato, Alfredo | Carreon, Tania | Carta, Angela | Chan, John K. C. | Chang, Ellen T. | Chang, Gee-Chen | Chang, I-Shou | Chang, Jiang | Chang-Claude, Jenny | Chen, Chien-Jen | Chen, Chih-Yi | Chen, Chu | Chen, Chung-Hsing | Chen, Constance | Chen, Hongyan | Chen, Kexin | Chen, Kuan-Yu | Chen, Kun-Chieh | Chen, Ying | Chen, Ying-Hsiang | Chen, Yi-Song | Chen, Yuh-Min | Chien, Li-Hsin | Chirlaque, María-Dolores | Choi, Jin Eun | Choi, Yi Young | Chow, Wong-Ho | Chung, Charles C. | Clavel, Jacqueline | Clavel-Chapelon, Françoise | Cocco, Pierluigi | Colt, Joanne S. | Comperat, Eva | Conde, Lucia | Connors, Joseph M. | Conti, David | Cortessis, Victoria K. | Cotterchio, Michelle | Cozen, Wendy | Crouch, Simon | Crous-Bou, Marta | Cussenot, Olivier | Davis, Faith G. | Ding, Ti | Diver, W. Ryan | Dorronsoro, Miren | Dossus, Laure | Duell, Eric J. | Ennas, Maria Grazia | Erickson, Ralph L. | Feychting, Maria | Flanagan, Adrienne M. | Foretova, Lenka | Fraumeni, Joseph F. | Freedman, Neal D. | Beane Freeman, Laura E. | Fuchs, Charles | Gago-Dominguez, Manuela | Gallinger, Steven | Gao, Yu-Tang | Gapstur, Susan M. | Garcia-Closas, Montserrat | García-Closas, Reina | Gascoyne, Randy D. | Gastier-Foster, Julie | Gaudet, Mia M. | Gaziano, J. Michael | Giffen, Carol | Giles, Graham G. | Giovannucci, Edward | Glimelius, Bengt | Goggins, Michael | Gokgoz, Nalan | Goldstein, Alisa M. | Gorlick, Richard | Gross, Myron | Grubb, Robert | Gu, Jian | Guan, Peng | Gunter, Marc | Guo, Huan | Habermann, Thomas M. | Haiman, Christopher A. | Halai, Dina | Hallmans, Goran | Hassan, Manal | Hattinger, Claudia | He, Qincheng | He, Xingzhou | Helzlsouer, Kathy | Henderson, Brian | Henriksson, Roger | Hjalgrim, Henrik | Hoffman-Bolton, Judith | Hohensee, Chancellor | Holford, Theodore R. | Holly, Elizabeth A. | Hong, Yun-Chul | Hoover, Robert N. | Horn-Ross, Pamela L. | Hosain, G. M. Monawar | Hosgood, H. Dean | Hsiao, Chin-Fu | Hu, Nan | Hu, Wei | Hu, Zhibin | Huang, Ming-Shyan | Huerta, Jose-Maria | Hung, Jen-Yu | Hutchinson, Amy | Inskip, Peter D. | Jackson, Rebecca D. | Jacobs, Eric J. | Jenab, Mazda | Jeon, Hyo-Sung | Ji, Bu-Tian | Jin, Guangfu | Jin, Li | Johansen, Christoffer | Johnson, Alison | Jung, Yoo Jin | Kaaks, Rudolph | Kamineni, Aruna | Kane, Eleanor | Kang, Chang Hyun | Karagas, Margaret R. | Kelly, Rachel S. | Khaw, Kay-Tee | Kim, Christopher | Kim, Hee Nam | Kim, Jin Hee | Kim, Jun Suk | Kim, Yeul Hong | Kim, Young Tae | Kim, Young-Chul | Kitahara, Cari M. | Klein, Alison P. | Klein, Robert J. | Kogevinas, Manolis | Kohno, Takashi | Kolonel, Laurence N. | Kooperberg, Charles | Kricker, Anne | Krogh, Vittorio | Kunitoh, Hideo | Kurtz, Robert C. | Kweon, Sun-Seog | LaCroix, Andrea | Lawrence, Charles | Lecanda, Fernando | Lee, Victor Ho Fun | Li, Donghui | Li, Haixin | Li, Jihua | Li, Yao-Jen | Li, Yuqing | Liao, Linda M. | Liebow, Mark | Lightfoot, Tracy | Lim, Wei-Yen | Lin, Chien-Chung | Lin, Dongxin | Lindstrom, Sara | Linet, Martha S. | Link, Brian K. | Liu, Chenwei | Liu, Jianjun | Liu, Li | Ljungberg, Börje | Lloreta, Josep | Lollo, Simonetta Di | Lu, Daru | Lund, Eiluv | Malats, Nuria | Mannisto, Satu | Marchand, Loic Le | Marina, Neyssa | Masala, Giovanna | Mastrangelo, Giuseppe | Matsuo, Keitaro | Maynadie, Marc | McKay, James | McKean-Cowdin, Roberta | Melbye, Mads | Melin, Beatrice S. | Michaud, Dominique S. | Mitsudomi, Tetsuya | Monnereau, Alain | Montalvan, Rebecca | Moore, Lee E. | Mortensen, Lotte Maxild | Nieters, Alexandra | North, Kari E. | Novak, Anne J. | Oberg, Ann L. | Offit, Kenneth | Oh, In-Jae | Olson, Sara H. | Palli, Domenico | Pao, William | Park, In Kyu | Park, Jae Yong | Park, Kyong Hwa | Patiño-Garcia, Ana | Pavanello, Sofia | Peeters, Petra H. M. | Perng, Reury-Perng | Peters, Ulrike | Petersen, Gloria M. | Picci, Piero | Pike, Malcolm C. | Porru, Stefano | Prescott, Jennifer | Prokunina-Olsson, Ludmila | Qian, Biyun | Qiao, You-Lin | Rais, Marco | Riboli, Elio | Riby, Jacques | Risch, Harvey A. | Rizzato, Cosmeri | Rodabough, Rebecca | Roman, Eve | Roupret, Morgan | Ruder, Avima M. | de Sanjose, Silvia | Scelo, Ghislaine | Schned, Alan | Schumacher, Fredrick | Schwartz, Kendra | Schwenn, Molly | Scotlandi, Katia | Seow, Adeline | Serra, Consol | Serra, Massimo | Sesso, Howard D. | Setiawan, Veronica Wendy | Severi, Gianluca | Severson, Richard K. | Shanafelt, Tait D. | Shen, Hongbing | Shen, Wei | Shin, Min-Ho | Shiraishi, Kouya | Shu, Xiao-Ou | Siddiq, Afshan | Sierrasesúmaga, Luis | Sihoe, Alan Dart Loon | Skibola, Christine F. | Smith, Alex | Smith, Martyn T. | Southey, Melissa C. | Spinelli, John J. | Staines, Anthony | Stampfer, Meir | Stern, Marianna C. | Stevens, Victoria L. | Stolzenberg-Solomon, Rachael S. | Su, Jian | Su, Wu-Chou | Sund, Malin | Sung, Jae Sook | Sung, Sook Whan | Tan, Wen | Tang, Wei | Tardón, Adonina | Thomas, David | Thompson, Carrie A. | Tinker, Lesley F. | Tirabosco, Roberto | Tjønneland, Anne | Travis, Ruth C. | Trichopoulos, Dimitrios | Tsai, Fang-Yu | Tsai, Ying-Huang | Tucker, Margaret | Turner, Jenny | Vajdic, Claire M. | Vermeulen, Roel C. H. | Villano, Danylo J. | Vineis, Paolo | Virtamo, Jarmo | Visvanathan, Kala | Wactawski-Wende, Jean | Wang, Chaoyu | Wang, Chih-Liang | Wang, Jiu-Cun | Wang, Junwen | Wei, Fusheng | Weiderpass, Elisabete | Weiner, George J. | Weinstein, Stephanie | Wentzensen, Nicolas | White, Emily | Witzig, Thomas E. | Wolpin, Brian M. | Wong, Maria Pik | Wu, Chen | Wu, Guoping | Wu, Junjie | Wu, Tangchun | Wu, Wei | Wu, Xifeng | Wu, Yi-Long | Wunder, Jay S. | Xiang, Yong-Bing | Xu, Jun | Xu, Ping | Yang, Pan-Chyr | Yang, Tsung-Ying | Ye, Yuanqing | Yin, Zhihua | Yokota, Jun | Yoon, Ho-Il | Yu, Chong-Jen | Yu, Herbert | Yu, Kai | Yuan, Jian-Min | Zelenetz, Andrew | Zeleniuch-Jacquotte, Anne | Zhang, Xu-Chao | Zhang, Yawei | Zhao, Xueying | Zhao, Zhenhong | Zheng, Hong | Zheng, Tongzhang | Zheng, Wei | Zhou, Baosen | Zhu, Meng | Zucca, Mariagrazia | Boca, Simina M. | Cerhan, James R. | Ferri, Giovanni M. | Hartge, Patricia | Hsiung, Chao Agnes | Magnani, Corrado | Miligi, Lucia | Morton, Lindsay M. | Smedby, Karin E. | Teras, Lauren R. | Vijai, Joseph | Wang, Sophia S. | Brennan, Paul | Caporaso, Neil E. | Hunter, David J. | Kraft, Peter | Rothman, Nathaniel | Silverman, Debra T. | Slager, Susan L. | Chanock, Stephen J. | Chatterjee, Nilanjan
Background:
Studies of related individuals have consistently demonstrated notable familial aggregation of cancer. We aim to estimate the heritability and genetic correlation attributable to the additive effects of common single-nucleotide polymorphisms (SNPs) for cancer at 13 anatomical sites.
Methods:
Between 2007 and 2014, the US National Cancer Institute has generated data from genome-wide association studies (GWAS) for 49 492 cancer case patients and 34 131 control patients. We apply novel mixed model methodology (GCTA) to this GWAS data to estimate the heritability of individual cancers, as well as the proportion of heritability attributable to cigarette smoking in smoking-related cancers, and the genetic correlation between pairs of cancers.
Results:
GWAS heritability was statistically significant at nearly all sites, with the estimates of array-based heritability, hl 2, on the liability threshold (LT) scale ranging from 0.05 to 0.38. Estimating the combined heritability of multiple smoking characteristics, we calculate that at least 24% (95% confidence interval [CI] = 14% to 37%) and 7% (95% CI = 4% to 11%) of the heritability for lung and bladder cancer, respectively, can be attributed to genetic determinants of smoking. Most pairs of cancers studied did not show evidence of strong genetic correlation. We found only four pairs of cancers with marginally statistically significant correlations, specifically kidney and testes (ρ = 0.73, SE = 0.28), diffuse large B-cell lymphoma (DLBCL) and pediatric osteosarcoma (ρ = 0.53, SE = 0.21), DLBCL and chronic lymphocytic leukemia (CLL) (ρ = 0.51, SE =0.18), and bladder and lung (ρ = 0.35, SE = 0.14). Correlation analysis also indicates that the genetic architecture of lung cancer differs between a smoking population of European ancestry and a nonsmoking Asian population, allowing for the possibility that the genetic etiology for the same disease can vary by population and environmental exposures.
Conclusion:
Our results provide important insights into the genetic architecture of cancers and suggest new avenues for investigation.
doi:10.1093/jnci/djv279
PMCID: PMC4806328  PMID: 26464424
2.  Genome-Wide Association Study of Event-Free Survival in Diffuse Large B-Cell Lymphoma Treated With Immunochemotherapy 
Journal of Clinical Oncology  2015;33(33):3930-3937.
Purpose
We performed a multistage genome-wide association study to identify inherited genetic variants that predict outcome in diffuse large B-cell lymphoma patients treated with immunochemotherapy.
Methods
We conducted a meta-analysis of two genome-wide association study data sets, one from the LNH2003B trial (N = 540), a prospective clinical trial from the Lymphoma Study Association, and the other from the Molecular Epidemiology Resource study (N = 312), a prospective observational study from the University of Iowa–Mayo Clinic Lymphoma Specialized Program of Research Excellence. Top single nucleotide polymorphisms were then genotyped in independent cohorts of patients from the Specialized Program of Research Excellence (N = 391) and the Groupe Ouest-Est des Leucémies Aiguës et Maladies du Sang (GOELAMS) -075 randomized trial (N = 294). We calculated the hazard ratios (HRs) and 95% CIs for event-free survival (EFS) and overall survival (OS) using a log-additive genetic model with adjustment for age, sex, and age-adjusted International Prognostic Index.
Results
In a meta-analysis of the four studies, the top loci for EFS were marked by rs7712513 at 5q23.2 (near SNX2 and SNCAIP; HR, 1.39; 95% CI, 1.23 to 1.57; P = 2.08 × 10−7), and rs7765004 at 6q21 (near MARCKS and HDAC2; HR, 1.38; 95% CI, 1.22 to 1.57; P = 7.09 × 10−7), although they did not reach conventional genome-wide significance (P = 5 × 10−8). Both rs7712513 (HR, 1.49; 95% CI, 1.29 to 1.72; P = 3.53 × 10−8) and rs7765004 (HR, 1.47; 95% CI, 1.27 to 1.71; P = 5.36 × 10−7) were also associated with OS. In exploratory analyses, a two–single nucleotide polymorphism risk score was highly predictive of EFS (P = 1.78 × 10−12) and was independent of treatment, IPI, and cell-of-origin classification.
Conclusion
Our study provides encouraging evidence for associations between loci at 5q23.2 and 6q21 with EFS and OS in patients with diffuse large B-cell lymphoma treated with immunochemotherapy, suggesting novel biology and the potential contribution of host genetics to the prognosis of this aggressive malignancy.
doi:10.1200/JCO.2014.60.2573
PMCID: PMC4879713  PMID: 26460308
3.  Non-Hodgkin lymphoma, body mass index and cytokine polymorphisms: a pooled analysis from the InterLymph consortium 
Background
Excess adiposity has been associated with lymphomagenesis, possibly mediated by increased cytokine production causing a chronic inflammatory state. The relationship between obesity, cytokine polymorphisms and selected mature B-cell neoplasms is reported.
Method
Data on 4979 cases and 4752 controls from nine American/European studies from the InterLymph consortium (1988–2008) were pooled. For diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL) and chronic lymphocytic leukaemia/small lymphocytic lymphoma (CLL/SLL), joint associations of body mass index (from self-reported height and weight) and 12 polymorphisms in cytokines IL1A (rs1800587), IL1B (rs16944, rs1143627), IL1RN (rs454078), IL2 (rs2069762), IL6 (rs1800795, rs1800797), IL10 (rs1800890, rs1800896), TNF (rs1800629), LTA (rs909253), and CARD15 (rs2066847) were investigated using unconditional logistic regression. BMI-polymorphism interaction effects were estimated using the relative excess risk due to interaction (RERI).
Results
Obesity (BMI≥30kg m−2) was associated with DLBCL risk (OR=1.33, 95%CI 1.02–1.73), as was TNF-308GA+AA (OR=1.24, 95%CI 1.07–1.44). Together, being obese and TNF-308GA+AA increased DLBCL risk almost two-fold relative to those of normal weight and TNF-308GG (OR=1.93 95%CI 1.27–2.94), with a RERI of 0.41 (95%CI −0.05,0.84, P(interaction)=0.13). For FL and CLL/SLL, no associations with obesity or TNF-308GA+AA, either singly or jointly, were observed. No evidence of interactions between obesity and the other polymorphisms were detected.
Conclusions
Our results suggest that cytokine polymorphisms do not generally interact with BMI to increase lymphoma risk but obesity and TNF-308GA+AA may interact to increase DLBCL risk.
Impact
Studies using better measures of adiposity are needed to further investigate the interactions between obesity and TNF-308G>A in the pathogenesis of lymphoma.
doi:10.1158/1055-9965.EPI-14-1355
PMCID: PMC4490950  PMID: 25962811
Body mass index; genotype; polymorphism; non-Hodgkin lymphoma
4.  Targeted inhibition of the deubiquitinating enzymes, USP14 and UCHL5, induces proteotoxic stress and apoptosis in Waldenström macroglobulinaemia tumour cells 
British journal of haematology  2015;169(3):377-390.
Summary
Deubiquitinase enzymes (DUBs) of the proteasomal 19S regulatory particle are emerging as important therapeutic targets in several malignancies. Here we demonstrate that inhibition of two proteasome-associated DUBs (USP14 and UCHL5) with the small molecule DUB inhibitor b-AP15, results in apoptosis of human Waldenström macroglobulinaemia (WM) cell lines and primary patient-derived WM tumour cells. Importantly, b-AP15 produced proteotoxic stress and apoptosis in WM cells that have acquired resistance to the proteasome inhibitor bortezomib. In silico modelling identified protein residues that were critical for the binding of b-AP15 with USP14 or UCHL5 and proteasome enzyme activity assays confirmed that b-AP15 does not affect the proteolytic capabilities of the 20S proteasome β-subunits. In vitro toxicity from b-AP15 appeared to result from a build-up of ubiquitinated proteins and activation of the endoplasmic reticulum stress response in WM cells, an effect that also disrupted the mitochondria. Focused transcriptome profiling of b-AP15-treated WM cells revealed modulation of several genes regulating cell stress and NF-κB signalling, the latter whose protein translocation and downstream target activation was reduced by b-AP15 in vitro. This is the first report to define the effects and underlying mechanisms associated with inhibition of USP14 and UCHL5 DUB activity in WM tumour cells.
doi:10.1111/bjh.13304
PMCID: PMC4846423  PMID: 25691154
proteasome; deubiquitinase enzymes; Waldenströms macroglobulinaemia; transcriptome; preclinical
5.  Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia 
Berndt, Sonja I. | Camp, Nicola J. | Skibola, Christine F. | Vijai, Joseph | Wang, Zhaoming | Gu, Jian | Nieters, Alexandra | Kelly, Rachel S. | Smedby, Karin E. | Monnereau, Alain | Cozen, Wendy | Cox, Angela | Wang, Sophia S. | Lan, Qing | Teras, Lauren R. | Machado, Moara | Yeager, Meredith | Brooks-Wilson, Angela R. | Hartge, Patricia | Purdue, Mark P. | Birmann, Brenda M. | Vajdic, Claire M. | Cocco, Pierluigi | Zhang, Yawei | Giles, Graham G. | Zeleniuch-Jacquotte, Anne | Lawrence, Charles | Montalvan, Rebecca | Burdett, Laurie | Hutchinson, Amy | Ye, Yuanqing | Call, Timothy G. | Shanafelt, Tait D. | Novak, Anne J. | Kay, Neil E. | Liebow, Mark | Cunningham, Julie M. | Allmer, Cristine | Hjalgrim, Henrik | Adami, Hans-Olov | Melbye, Mads | Glimelius, Bengt | Chang, Ellen T. | Glenn, Martha | Curtin, Karen | Cannon-Albright, Lisa A. | Diver, W Ryan | Link, Brian K. | Weiner, George J. | Conde, Lucia | Bracci, Paige M. | Riby, Jacques | Arnett, Donna K. | Zhi, Degui | Leach, Justin M. | Holly, Elizabeth A. | Jackson, Rebecca D. | Tinker, Lesley F. | Benavente, Yolanda | Sala, Núria | Casabonne, Delphine | Becker, Nikolaus | Boffetta, Paolo | Brennan, Paul | Foretova, Lenka | Maynadie, Marc | McKay, James | Staines, Anthony | Chaffee, Kari G. | Achenbach, Sara J. | Vachon, Celine M. | Goldin, Lynn R. | Strom, Sara S. | Leis, Jose F. | Weinberg, J. Brice | Caporaso, Neil E. | Norman, Aaron D. | De Roos, Anneclaire J. | Morton, Lindsay M. | Severson, Richard K. | Riboli, Elio | Vineis, Paolo | Kaaks, Rudolph | Masala, Giovanna | Weiderpass, Elisabete | Chirlaque, María- Dolores | Vermeulen, Roel C. H. | Travis, Ruth C. | Southey, Melissa C. | Milne, Roger L. | Albanes, Demetrius | Virtamo, Jarmo | Weinstein, Stephanie | Clavel, Jacqueline | Zheng, Tongzhang | Holford, Theodore R. | Villano, Danylo J. | Maria, Ann | Spinelli, John J. | Gascoyne, Randy D. | Connors, Joseph M. | Bertrand, Kimberly A. | Giovannucci, Edward | Kraft, Peter | Kricker, Anne | Turner, Jenny | Ennas, Maria Grazia | Ferri, Giovanni M. | Miligi, Lucia | Liang, Liming | Ma, Baoshan | Huang, Jinyan | Crouch, Simon | Park, Ju-Hyun | Chatterjee, Nilanjan | North, Kari E. | Snowden, John A. | Wright, Josh | Fraumeni, Joseph F. | Offit, Kenneth | Wu, Xifeng | de Sanjose, Silvia | Cerhan, James R. | Chanock, Stephen J. | Rothman, Nathaniel | Slager, Susan L.
Nature Communications  2016;7:10933.
Chronic lymphocytic leukemia (CLL) is a common lymphoid malignancy with strong heritability. To further understand the genetic susceptibility for CLL and identify common loci associated with risk, we conducted a meta-analysis of four genome-wide association studies (GWAS) composed of 3,100 cases and 7,667 controls with follow-up replication in 1,958 cases and 5,530 controls. Here we report three new loci at 3p24.1 (rs9880772, EOMES, P=2.55 × 10−11), 6p25.2 (rs73718779, SERPINB6, P=1.97 × 10−8) and 3q28 (rs9815073, LPP, P=3.62 × 10−8), as well as a new independent SNP at the known 2q13 locus (rs9308731, BCL2L11, P=1.00 × 10−11) in the combined analysis. We find suggestive evidence (P<5 × 10−7) for two additional new loci at 4q24 (rs10028805, BANK1, P=7.19 × 10−8) and 3p22.2 (rs1274963, CSRNP1, P=2.12 × 10−7). Pathway analyses of new and known CLL loci consistently show a strong role for apoptosis, providing further evidence for the importance of this biological pathway in CLL susceptibility.
Chronic lymphocytic leukemia is a highly inheritable cancer. Here the authors conduct a metaanalysis of four genome-wide association studies and identify three novel loci located near EOMES, SERPINB6 and LPP associated with risk of this disease.
doi:10.1038/ncomms10933
PMCID: PMC4786871  PMID: 26956414
6.  BAFF-R Specific Activation of TRAF6 and the PI3K-Pathway in Lymphoma B Cells 
Leukemia & lymphoma  2014;55(8):1884-1892.
BAFF-R is the primary BAFF receptor that is responsible for promoting B-cell development and survival. Malignant B-cells exploit the BAFF/BAFF receptor system and high serum BAFF levels or genetic alterations in BAFF receptors have been found in B-cell cancers. BAFF signaling impacts pro-survival pathways, however, other than NF-κB2, little is known about the specific pathways activated by individual BAFF receptors. Using a novel BAFF-R expression model we now demonstrate that activation of BAFF-R, independent of TACI and BCMA, can induce phosphorylation of Akt and GSK3β. Expression of an activated form of BAFF-R also enhanced a pro-survival gene expression pattern, including the novel BAFF-regulated gene Pin1, whose expression was PI3K-dependent. Additionally, we show that TRAF6 is essential for mediating BAFF-R-dependent activation of Akt. Together these data describe a novel role for TRAF6 in BAFF-R-specific activation of the PI3K pathway and provide evidence suggesting a new role for Pin1 in BAFF-R signaling.
doi:10.3109/10428194.2013.862619
PMCID: PMC4110115  PMID: 24206092
BAFF-R; BAFF; lymphoma; PI3-kinase
7.  A genome-wide association study of marginal zone lymphoma shows association to the HLA region 
Vijai, Joseph | Wang, Zhaoming | Berndt, Sonja I | Skibola, Christine F | Slager, Susan L | de Sanjose, Silvia | Melbye, Mads | Glimelius, Bengt | Bracci, Paige M | Conde, Lucia | Birmann, Brenda M | Wang, Sophia S | Brooks-Wilson, Angela R | Lan, Qing | de Bakker, Paul I W | Vermeulen, Roel C H | Portlock, Carol | Ansell, Stephen M | Link, Brian K | Riby, Jacques | North, Kari E | Gu, Jian | Hjalgrim, Henrik | Cozen, Wendy | Becker, Nikolaus | Teras, Lauren R | Spinelli, John J | Turner, Jenny | Zhang, Yawei | Purdue, Mark P | Giles, Graham G | Kelly, Rachel S | Zeleniuch-Jacquotte, Anne | Ennas, Maria Grazia | Monnereau, Alain | Bertrand, Kimberly A | Albanes, Demetrius | Lightfoot, Tracy | Yeager, Meredith | Chung, Charles C | Burdett, Laurie | Hutchinson, Amy | Lawrence, Charles | Montalvan, Rebecca | Liang, Liming | Huang, Jinyan | Ma, Baoshan | Villano, Danylo J | Maria, Ann | Corines, Marina | Thomas, Tinu | Novak, Anne J | Dogan, Ahmet | Liebow, Mark | Thompson, Carrie A | Witzig, Thomas E | Habermann, Thomas M | Weiner, George J | Smith, Martyn T | Holly, Elizabeth A | Jackson, Rebecca D | Tinker, Lesley F | Ye, Yuanqing | Adami, Hans-Olov | Smedby, Karin E | De Roos, Anneclaire J | Hartge, Patricia | Morton, Lindsay M | Severson, Richard K | Benavente, Yolanda | Boffetta, Paolo | Brennan, Paul | Foretova, Lenka | Maynadie, Marc | McKay, James | Staines, Anthony | Diver, W Ryan | Vajdic, Claire M | Armstrong, Bruce K | Kricker, Anne | Zheng, Tongzhang | Holford, Theodore R | Severi, Gianluca | Vineis, Paolo | Ferri, Giovanni M | Ricco, Rosalia | Miligi, Lucia | Clavel, Jacqueline | Giovannucci, Edward | Kraft, Peter | Virtamo, Jarmo | Smith, Alex | Kane, Eleanor | Roman, Eve | Chiu, Brian C H | Fraumeni, Joseph F | Wu, Xifeng | Cerhan, James R | Offit, Kenneth | Chanock, Stephen J | Rothman, Nathaniel | Nieters, Alexandra
Nature communications  2015;6:5751.
Marginal zone lymphoma (MZL) is the third most common subtype of B-cell non-Hodgkin lymphoma. Here we perform a two-stage GWAS of 1,281 MZL cases and 7,127 controls of European ancestry and identify two independent loci near BTNL2 (rs9461741, P=3.95×10−15) and HLA-B (rs2922994, P=2.43×10−9) in the HLA region significantly associated with MZL risk. This is the first evidence that genetic variation in the major histocompatibility complex influences MZL susceptibility.
doi:10.1038/ncomms6751
PMCID: PMC4287989  PMID: 25569183
8.  Pattern of CD14+ follicular dendritic cells and PD1+ T cells independently predicts time to transformation in follicular lymphoma 
Purpose
Transformation of follicular lymphoma (FL) is a critical event associated with a poor prognosis. The role of the tumor microenvironment in previous transformation studies has yielded conflicting results.
Experimental Design
To define cell subtypes associated with transformation, we examined tissue specimens at diagnosis from patients with FL that later transformed and, using immunohistochemistry (IHC), stained for CD68, CD11c, CD21, CXCL13, FOXP3, PD-1 and CD14. Cell content and pattern of expression were evaluated. Those identified as significantly associated with time to transformation (TTT) and overall survival (OS) were further characterized by flow cytometry and multicolor IHC.
Results
58 patients were analyzed with median TTT of 4.7 years. The pattern of PD1+ and CD14+ cells rather than the quantity of cells was predictive of clinical outcomes. On multivariate analysis including the FLIPI score, CD14+ cells localized in the follicle were associated with a shorter TTT (HR=3.0; p=0.004). PD-1+ cells with diffuse staining were associated with a shorter TTT (HR=1.9; p=0.045) and inferior OS (HR=2.5; p=0.012). Multicolor IHC and flow cytometry identified CD14+ cells as follicular dendritic cells (FDC) while PD1+ cells represented two separate populations, TFH and exhausted T-cells.
Conclusion
These results identify the presence of PD1+ T-cells and CD14+ FDC as independent predictors of transformation in follicular lymphoma.
doi:10.1158/1078-0432.CCR-13-2367
PMCID: PMC4058762  PMID: 24727328
CD14; PD1; follicular lymphoma; tumor microenvironment; time to transformation
9.  Genome-wide association study identifies multiple susceptibility loci for diffuse large B-cell lymphoma 
Cerhan, James R | Berndt, Sonja I | Vijai, Joseph | Ghesquières, Hervé | McKay, James | Wang, Sophia S | Wang, Zhaoming | Yeager, Meredith | Conde, Lucia | de Bakker, Paul I W | Nieters, Alexandra | Cox, David | Burdett, Laurie | Monnereau, Alain | Flowers, Christopher R | De Roos, Anneclaire J | Brooks-Wilson, Angela R | Lan, Qing | Severi, Gianluca | Melbye, Mads | Gu, Jian | Jackson, Rebecca D | Kane, Eleanor | Teras, Lauren R | Purdue, Mark P | Vajdic, Claire M | Spinelli, John J | Giles, Graham G | Albanes, Demetrius | Kelly, Rachel S | Zucca, Mariagrazia | Bertrand, Kimberly A | Zeleniuch-Jacquotte, Anne | Lawrence, Charles | Hutchinson, Amy | Zhi, Degui | Habermann, Thomas M | Link, Brian K | Novak, Anne J | Dogan, Ahmet | Asmann, Yan W | Liebow, Mark | Thompson, Carrie A | Ansell, Stephen M | Witzig, Thomas E | Weiner, George J | Veron, Amelie S | Zelenika, Diana | Tilly, Hervé | Haioun, Corinne | Molina, Thierry Jo | Hjalgrim, Henrik | Glimelius, Bengt | Adami, Hans-Olov | Bracci, Paige M | Riby, Jacques | Smith, Martyn T | Holly, Elizabeth A | Cozen, Wendy | Hartge, Patricia | Morton, Lindsay M | Severson, Richard K | Tinker, Lesley F | North, Kari E | Becker, Nikolaus | Benavente, Yolanda | Boffetta, Paolo | Brennan, Paul | Foretova, Lenka | Maynadie, Marc | Staines, Anthony | Lightfoot, Tracy | Crouch, Simon | Smith, Alex | Roman, Eve | Diver, W Ryan | Offit, Kenneth | Zelenetz, Andrew | Klein, Robert J | Villano, Danylo J | Zheng, Tongzhang | Zhang, Yawei | Holford, Theodore R | Kricker, Anne | Turner, Jenny | Southey, Melissa C | Clavel, Jacqueline | Virtamo, Jarmo | Weinstein, Stephanie | Riboli, Elio | Vineis, Paolo | Kaaks, Rudolph | Trichopoulos, Dimitrios | Vermeulen, Roel C H | Boeing, Heiner | Tjonneland, Anne | Angelucci, Emanuele | Di Lollo, Simonetta | Rais, Marco | Birmann, Brenda M | Laden, Francine | Giovannucci, Edward | Kraft, Peter | Huang, Jinyan | Ma, Baoshan | Ye, Yuanqing | Chiu, Brian C H | Sampson, Joshua | Liang, Liming | Park, Ju-Hyun | Chung, Charles C | Weisenburger, Dennis D | Chatterjee, Nilanjan | Fraumeni, Joseph F | Slager, Susan L | Wu, Xifeng | de Sanjose, Silvia | Smedby, Karin E | Salles, Gilles | Skibola, Christine F | Rothman, Nathaniel | Chanock, Stephen J
Nature genetics  2014;46(11):1233-1238.
doi:10.1038/ng.3105
PMCID: PMC4213349  PMID: 25261932
10.  Bone Marrow Stromal Cells Protect Lymphoma B-cells from Rituximab-Induced Apoptosis and Targeting Integrin alfa-4-beta-1 (VLA-4) with Natalizumab can Overcome this Resistance 
British journal of haematology  2011;155(1):53-64.
Rituximab improves the outcome of patients with non-Hodgkin lymphoma, but does not completely eradicate residual B-cell populations in the microenvironment of the bone marrow and lymph nodes. Adhesion to stromal cells can protect B-cells from apoptosis induced by chemotherapy drugs (cell adhesion-mediated drug resistance; CAM-DR). A similar mechanism of resistance to rituximab has not, to our knowledge, been described. We tested the hypothesis that the microenvironment protects malignant B-cells from rituximab-induced apoptosis, and that blocking these interactions with natalizumab, an antibody targeting VLA-4 (integrin alfa-4-beta-1/CD49d), can overcome this protection. VLA-4 is an adhesion molecule constitutively expressed on malignant B-cells and is important for pro-survival signalling in the bone marrow and lymph node microenvironment. The human bone marrow stromal cell line HS-5 was shown to strongly protect B-cell lymphoma cells from rituximab cytotoxicity, suggesting the existence of a stromal cell adhesion-mediated antibody resistance (CAM-AR) mechanism analogous to CAM-DR. Natalizumab decreased B-lymphocyte adherence to fibronectin by 75-95% and partially overcame stromal protection against rituximab and cytotoxic drugs. These pre-clinical findings suggest that the addition of stromal adhesion-disruptive drugs to rituximab-containing therapy could improve treatment efficacy.
doi:10.1111/j.1365-2141.2011.08794.x
PMCID: PMC4405035  PMID: 21749361
lymphoma; stromal cells; cell adhesion-mediated drug resistance; rituximab; natalizumab
11.  A genome-wide association study of marginal zone lymphoma shows association to the HLA region 
Vijai, Joseph | Wang, Zhaoming | Berndt, Sonja I. | Skibola, Christine F. | Slager, Susan L. | de Sanjose, Silvia | Melbye, Mads | Glimelius, Bengt | Bracci, Paige M. | Conde, Lucia | Birmann, Brenda M. | Wang, Sophia S. | Brooks-Wilson, Angela R. | Lan, Qing | de Bakker, Paul I. W. | Vermeulen, Roel C. H. | Portlock, Carol | Ansell, Stephen M. | Link, Brian K. | Riby, Jacques | North, Kari E. | Gu, Jian | Hjalgrim, Henrik | Cozen, Wendy | Becker, Nikolaus | Teras, Lauren R. | Spinelli, John J. | Turner, Jenny | Zhang, Yawei | Purdue, Mark P. | Giles, Graham G. | Kelly, Rachel S. | Zeleniuch-Jacquotte, Anne | Ennas, Maria Grazia | Monnereau, Alain | Bertrand, Kimberly A. | Albanes, Demetrius | Lightfoot, Tracy | Yeager, Meredith | Chung, Charles C. | Burdett, Laurie | Hutchinson, Amy | Lawrence, Charles | Montalvan, Rebecca | Liang, Liming | Huang, Jinyan | Ma, Baoshan | Villano, Danylo J. | Maria, Ann | Corines, Marina | Thomas, Tinu | Novak, Anne J. | Dogan, Ahmet | Liebow, Mark | Thompson, Carrie A. | Witzig, Thomas E. | Habermann, Thomas M. | Weiner, George J. | Smith, Martyn T. | Holly, Elizabeth A. | Jackson, Rebecca D. | Tinker, Lesley F. | Ye, Yuanqing | Adami, Hans-Olov | Smedby, Karin E. | De Roos, Anneclaire J. | Hartge, Patricia | Morton, Lindsay M. | Severson, Richard K. | Benavente, Yolanda | Boffetta, Paolo | Brennan, Paul | Foretova, Lenka | Maynadie, Marc | McKay, James | Staines, Anthony | Diver, W. Ryan | Vajdic, Claire M. | Armstrong, Bruce K. | Kricker, Anne | Zheng, Tongzhang | Holford, Theodore R. | Severi, Gianluca | Vineis, Paolo | Ferri, Giovanni M. | Ricco, Rosalia | Miligi, Lucia | Clavel, Jacqueline | Giovannucci, Edward | Kraft, Peter | Virtamo, Jarmo | Smith, Alex | Kane, Eleanor | Roman, Eve | Chiu, Brian C. H. | Fraumeni, Joseph F. | Wu, Xifeng | Cerhan, James R. | Offit, Kenneth | Chanock, Stephen J. | Rothman, Nathaniel | Nieters, Alexandra
Nature Communications  2015;6:5751.
Marginal zone lymphoma (MZL) is the third most common subtype of B-cell non-Hodgkin lymphoma. Here we perform a two-stage GWAS of 1,281 MZL cases and 7,127 controls of European ancestry and identify two independent loci near BTNL2 (rs9461741, P=3.95 × 10−15) and HLA-B (rs2922994, P=2.43 × 10−9) in the HLA region significantly associated with MZL risk. This is the first evidence that genetic variation in the major histocompatibility complex influences MZL susceptibility.
Marginal zone lymphoma (MZL) is a common subtype of B-cell non-Hodgkin lymphoma. Here the authors carry out a two-stage genome-wide association study in over 8,000 Europeans and identify two new MZL risk loci at chromosome 6p, implicating the major histocompatibility complex in the disease for the first time.
doi:10.1038/ncomms6751
PMCID: PMC4287989  PMID: 25569183
12.  PROGNOSTIC SIGNIFICANCE OF PRETREATMENT SERUM CYTOKINES IN CLASSICAL HODGKIN LYMPHOMA 
Purpose:
While the International Prognostic Score (IPS) is the gold standard for risk-stratifying patients with classical Hodgkin lymphoma (cHL), these criteria do not accurately predict outcome. As cytokines are critically involved in driving cHL, we tested whether pretreatment serum cytokine levels could provide additional prognostic information.
Experimental Design:
Thirty cytokines were measured in pretreatment serum from 140 cHL patients and compared with 50 non-lymphoma controls. Patients were followed for event-free and overall survival, and Cox proportional hazards regression models were used to assess the association of individual cytokines and the cytokine profiles with outcome via unadjusted and IPS-adjusted hazard ratios (HR).
Results:
Twelve cytokines (EGF, FGFb, GCSF, HGF, IL-6, IL-8, IL-12, IL-2R, IP-10, MIG, TNFa and VEGF) were significantly (p<0.05) higher in cHL patients than controls; elevated levels of HGF, IL-6, IL-2R, IP-10 and MIG were all associated with poorer event-free survival (EFS). Only IL-2R (p=0.002) and IL-6 (p<0.001) were independently prognostic. Patients with increased IL-6 and IL-2R had a significantly higher risk of early relapse and death, a finding that remained significant even after IPS-based risk stratification. While elevated IL-6 and IL-2R correlated with the IPS, sCD30 and TARC levels, the 2-cytokine model remained independently predictive of prognosis.
Conclusions:
Elevated pretreatment serum cytokines are associated with increased disease relapse and inferior survival in cHL. Thus, the pretreatment cytokine profile, particularly serum levels of IL-6 and IL-2R, may be used to identify cHL patients at high risk for early disease relapse.
doi:10.1158/1078-0432.CCR-13-1879
PMCID: PMC3867576  PMID: 24141626
13.  Cytokine gene polymorphisms and progression-free survival in classical Hodgkin lymphoma by EBV status: Results from two independent cohorts 
Cytokine  2013;64(2):523-531.
Background
Cytokines are important immune mediators of classical Hodgkin lymphoma (CHL) pathogenesis, and circulating levels at diagnosis may help predict prognosis. Germline single nucleotide polymorphisms (SNPs) in immune genes have been correlated with cytokine production and function.
Methods
We investigated whether selected germline SNPs in IL10 (rs1800890, rs1800896, rs1800871, rs1800872), TNFA (rs1800629), IL6 (rs1800795), ILRN (rs419598), INFG (rs2430561) and CCL17 (rs223828) were associated with circulating levels of related cytokines at diagnosis and progression-free survival (PFS) in CHL. Patients were from France (GELA, N = 464; median age = 32 years) and the United States (Iowa/Mayo Specialized Program Of Research Excellence [SPORE], N = 239; median age = 38 years); 22% of 346 CHL cases with EBV tumor status were positive.
Results
There was no association with any of the SNPs with cytokine levels. Overall, there was no association of any of the SNPs with PFS. In exploratory analyses by EBV status, TNFA rs1800629 (HRAA/AG = 2.41; 95%CI, 1.17–4.94) was associated with PFS in EBV-negative GELA patients, with similar trends in the SPORE patients (HRAA/AG = 1.63; 95%CI, 0.61–4.40). In a meta-analysis of the two studies, TNFA (HRAA/AG = 2.11; 95%CI, 1.18–3.77; P = 0.01) was statistically significant, and further adjustment for the international prognostic system did not alter this result.
Conclusions
This study showed that germline variation in TNFA was associated with CHL prognosis for EBV-negative patients, which will require confirmation. These results support broader studies on the differential impact of genetic variation in immune genes on EBV-positive vs. EBV-negative CHL pathogenesis.
doi:10.1016/j.cyto.2013.08.002
PMCID: PMC4017856  PMID: 24008079
Hodgkin lymphoma; Cytokines; Polymorphism; TNFA; EBV
14.  FCGR2A and FCGR3A polymorphisms in classical Hodgkin lymphoma by EBV status 
Leukemia & lymphoma  2013;54(11):2571-2573.
doi:10.3109/10428194.2013.796048
PMCID: PMC3999590  PMID: 23597143
FCGR2A; FCGR3A; polymorphism; EBV; Hodgkin Lymphoma
15.  TGF-β upregulates CD70 expression and induces exhaustion of effector memory T cells in B-cell non-Hodgkin’s lymphoma 
Leukemia  2014;28(9):1872-1884.
Transforming growth factor beta (TGF-β) plays an important role in mediating T-cell suppression in B-cell non-Hodgkin lymphoma (NHL). However, the underlying mechanism responsible for TGF-β-mediated inhibition of effector memory T (Tm) cells is largely unknown. As reported here, we show that exhaustion is a major mechanism by which TGF-β inhibits Tm cells, and TGF-β mediated exhaustion is associated with upregulation of CD70. We found that TGF-β upregulates CD70 expression on effector Tm cells while it preferentially induces Foxp3 expression in naïve T cells. CD70 induction by TGF-β is Smad3-dependent and involves IL-2/Stat5 signaling. CD70+ T cells account for TGF-β-induced exhaustion of effector Tm cells. Both TGF-β-induced and preexisting intratumoral CD70+ effector Tm cells from B-cell NHL have an exhausted phenotype and express higher levels of PD-1 and TIM-3 compared to CD70− T cells. Signaling transduction, proliferation and cytokine production are profoundly decreased in these cells and they are highly susceptible to apoptosis. Clinically, intratumoral CD70-expressing T cells are prevalent in follicular B-cell lymphoma (FL) biopsy specimens, and increased numbers of intratumoral CD70+ T cells correlate with an inferior patient outcome. These findings confirm TGF-β-mediated effector Tm cell exhaustion as an important mechanism of immune suppression in B-cell NHL.
doi:10.1038/leu.2014.84
PMCID: PMC4145058  PMID: 24569779
TGF-β; CD70; T-cell exhaustion; B-cell non-Hodgkin lymphoma
16.  CXCR5 polymorphisms in non-Hodgkin lymphoma risk and prognosis 
CXCR5 [chemokine (C-X-C motif) receptor 5; also known as Burkitt lymphoma receptor 1 (BCR1)] is expressed on mature B-cells, subsets of CD4+ and CD8+ T-cells, and skin-derived migratory dendritic cells. Together with its ligand, CXCL13, CXCR5 is involved in guiding B-cells into the B-cell zones of secondary lymphoid organs as well as T-cell migration. This study evaluated the role of common germline genetic variation in CXCR5 in the risk and prognosis of non-Hodgkin lymphoma (NHL) using a clinic-based study of 1521 controls and 2694 NHL cases including 710 chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL), 586 diffuse large B-cell lymphoma (DLBCL), 588 follicular lymphoma (FL), 137 mantle cell lymphoma (MCL), 230 marginal zone lymphoma (MZL) and 158 peripheral T-cell lymphoma (PTCL). Of the ten CXCR5 tag SNPs in our study, five were associated with risk of NHL, with rs1790192 having the strongest association (OR=1.19, 95%CI 1.08–1.30; p=0.0003). This SNP was most strongly associated with the risk of FL (OR=1.44, 95%CI 1.25–1.66; p=3.1×10−7), with a lower degree of association with DLBCL (OR=1.16, 95%CI 1.01–1.33; p=0.04) and PTCL (OR=1.29, 95%CI 1.02–1.64; p=0.04) but no association with the risk of MCL or MZL. For FL patients that were observed as initial disease management, the number of minor alleles of rs1790192 was associated with better event-free survival (EFS) (HR=0.64; 95%CI 0.47–0.87; p=0.004). These results provide additional evidence for a role of host genetic variation in CXCR5 in lymphomagenesis, particularly for FL.
doi:10.1007/s00262-013-1452-4
PMCID: PMC3758443  PMID: 23812490
non-Hodgkin lymphoma; SNPs; prognosis; prospective cohort; case-control
17.  PatternCNV: a versatile tool for detecting copy number changes from exome sequencing data 
Bioinformatics  2014;30(18):2678-2680.
Motivation: Exome sequencing (exome-seq) data, which are typically used for calling exonic mutations, have also been utilized in detecting DNA copy number variations (CNVs). Despite the existence of several CNV detection tools, there is still a great need for a sensitive and an accurate CNV-calling algorithm with built-in QC steps, and does not require a paired reference for each sample.
Results: We developed a novel method named PatternCNV, which (i) accounts for the read coverage variations between exons while leveraging the consistencies of this variability across different samples; (ii) reduces alignment BAM files to WIG format and therefore greatly accelerates computation; (iii) incorporates multiple QC measures designed to identify outlier samples and batch effects; and (iv) provides a variety of visualization options including chromosome, gene and exon-level views of CNVs, along with a tabular summarization of the exon-level CNVs. Compared with other CNV-calling algorithms using data from a lymphoma exome-seq study, PatternCNV has higher sensitivity and specificity.
Availability and implementation: The software for PatternCNV is implemented using Perl and R, and can be used in Mac or Linux environments. Software and user manual are available at http://bioinformaticstools.mayo.edu/research/patterncnv/, and R package at https://github.com/topsoil/patternCNV/.
Contact: Asmann.Yan@mayo.edu
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btu363
PMCID: PMC4155258  PMID: 24876377
18.  Mapping of the IRF8 gene identifies a 3’ UTR variant associated with risk of chronic lymphocytic leukemia but not other common non-Hodgkin lymphoma subtypes 
Background
Our genome-wide association study (GWAS) of chronic lymphocytic leukemia (CLL) identified 4 highly-correlated intronic variants within the IRF8 gene that were associated with CLL. These results were further supported by a recent meta-analysis of our GWAS with two other GWAS of CLL, supporting the IRF8 gene as a strong candidate for CLL risk.
Methods
To refine the genetic association of CLL risk, we performed Sanger sequencing of IRF8 in 94 CLL cases and 96 controls. We then performed fine-mapping by genotyping 39 variants (of which 10 were identified from sequencing) in 745 CLL cases and 1521 controls. We also assessed these associations with risk of other non-Hodgkin lymphoma (NHL) subtypes.
Results
The strongest association with CLL risk was observed with a common SNP located within the 3’ UTR of IRF8 (rs1044873, log additive odds ratio = 0.7, P=1.81×10−6). This SNP was not associated with the other NHL subtypes (all P>0.05).
Conclusions
We provide evidence that rs1044873 in the IRF8 gene accounts for the initial GWAS signal for CLL risk. This association appears to be unique to CLL with little support for association with other common NHL subtypes. Future work is needed to assess functional role of IRF8 in CLL etiology.
Impact
These data provide support that a functional variant within the 3’ UTR of IRF8 may be driving the GWAS signal seen on 16q24.1 for CLL risk.
doi:10.1158/1055-9965.EPI-12-1217
PMCID: PMC3596428  PMID: 23307532
CLL; NHL; SNPs; IRF8; risk locus
19.  Genome-wide Association Study Identifies Multiple Risk Loci for Chronic Lymphocytic Leukemia 
Berndt, Sonja I. | Skibola, Christine F. | Joseph, Vijai | Camp, Nicola J. | Nieters, Alexandra | Wang, Zhaoming | Cozen, Wendy | Monnereau, Alain | Wang, Sophia S. | Kelly, Rachel S. | Lan, Qing | Teras, Lauren R. | Chatterjee, Nilanjan | Chung, Charles C. | Yeager, Meredith | Brooks-Wilson, Angela R. | Hartge, Patricia | Purdue, Mark P. | Birmann, Brenda M. | Armstrong, Bruce K. | Cocco, Pierluigi | Zhang, Yawei | Severi, Gianluca | Zeleniuch-Jacquotte, Anne | Lawrence, Charles | Burdette, Laurie | Yuenger, Jeffrey | Hutchinson, Amy | Jacobs, Kevin B. | Call, Timothy G. | Shanafelt, Tait D. | Novak, Anne J. | Kay, Neil E. | Liebow, Mark | Wang, Alice H. | Smedby, Karin E | Adami, Hans-Olov | Melbye, Mads | Glimelius, Bengt | Chang, Ellen T. | Glenn, Martha | Curtin, Karen | Cannon-Albright, Lisa A. | Jones, Brandt | Diver, W. Ryan | Link, Brian K. | Weiner, George J. | Conde, Lucia | Bracci, Paige M. | Riby, Jacques | Holly, Elizabeth A. | Smith, Martyn T. | Jackson, Rebecca D. | Tinker, Lesley F. | Benavente, Yolanda | Becker, Nikolaus | Boffetta, Paolo | Brennan, Paul | Foretova, Lenka | Maynadie, Marc | McKay, James | Staines, Anthony | Rabe, Kari G. | Achenbach, Sara J. | Vachon, Celine M. | Goldin, Lynn R | Strom, Sara S. | Lanasa, Mark C. | Spector, Logan G. | Leis, Jose F. | Cunningham, Julie M. | Weinberg, J. Brice | Morrison, Vicki A. | Caporaso, Neil E. | Norman, Aaron D. | Linet, Martha S. | De Roos, Anneclaire J. | Morton, Lindsay M. | Severson, Richard K. | Riboli, Elio | Vineis, Paolo | Kaaks, Rudolph | Trichopoulos, Dimitrios | Masala, Giovanna | Weiderpass, Elisabete | Chirlaque, María-Dolores | Vermeulen, Roel C H | Travis, Ruth C. | Giles, Graham G. | Albanes, Demetrius | Virtamo, Jarmo | Weinstein, Stephanie | Clavel, Jacqueline | Zheng, Tongzhang | Holford, Theodore R | Offit, Kenneth | Zelenetz, Andrew | Klein, Robert J. | Spinelli, John J. | Bertrand, Kimberly A. | Laden, Francine | Giovannucci, Edward | Kraft, Peter | Kricker, Anne | Turner, Jenny | Vajdic, Claire M. | Ennas, Maria Grazia | Ferri, Giovanni M. | Miligi, Lucia | Liang, Liming | Sampson, Joshua | Crouch, Simon | Park, Ju-hyun | North, Kari E. | Cox, Angela | Snowden, John A. | Wright, Josh | Carracedo, Angel | Lopez-Otin, Carlos | Bea, Silvia | Salaverria, Itziar | Martin, David | Campo, Elias | Fraumeni, Joseph F. | de Sanjose, Silvia | Hjalgrim, Henrik | Cerhan, James R. | Chanock, Stephen J. | Rothman, Nathaniel | Slager, Susan L.
Nature genetics  2013;45(8):868-876.
doi:10.1038/ng.2652
PMCID: PMC3729927  PMID: 23770605
20.  Common variants within 6p21.31 locus are associated with chronic lymphocytic leukaemia and potentially other non-Hodgkin lymphoma subtypes 
British journal of haematology  2012;159(5):572-576.
Summary
A recent meta-analysis of three genome-wide association studies of chronic lymphocytic leukaemia (CLL) identified two common variants at the 6p21.31 locus that are associated with CLL risk. To verify and further explore the association of these variants with other non-Hodgkin lymphoma (NHL) subtypes, we genotyped 1196 CLL cases, 1699 NHL cases, and 2410 controls. We found significant associations between the 6p21.31 variants and CLL risk (rs210134: P=0.01; rs210142: P=6.8×10−3). These variants also showed a trend towards association with some of the other NHL subtypes. Our results validate the prior work and support specific genetic pathways for risk among NHL subtypes.
doi:10.1111/bjh.12070
PMCID: PMC3614403  PMID: 23025533
CLL; NHL; SNPs; BAK1; risk locus
21.  Pretreatment Circulating Serum Cytokines Associated with Follicular and Diffuse Large B-Cell Lymphoma: A Clinic-Based Case-Control Study 
Cytokine  2012;60(3):882-889.
Background
Abnormal immune function is a key factor in predisposition to non-Hodgkin lymphoma (NHL). We evaluated the association of 30 cytokines individually and as a profile with diffuse large B-cell (DLBCL) and follicular (FL) lymphomas.
Methods
We used a multiplexed assay to measure 30 cytokine concentrations in pre-treatment serum in a case-control study of 234 FL, 188 DLBCL, and 400 control participants. Unconditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CI) adjusted for age and sex, and polytomous regression was used to evaluate heterogeneity between FL and DLBCL. Principal components analysis (PCA) was used to assess cytokine profiles associated with FL and DLBCL.
Results
In single cytokine modeling, we found that 12 of the 30 circulating serum cytokines were significantly (P<0.05) associated with FL and/or DLBCL after accounting for multiple testing (q<0.05). Soluble IL-2R (sIL-2R) had the strongest association with both FL (OR=6.0 for highest versus lowest tertile, 95% CI 3.8–9.5; p-trend=1.8 × 10−21) and DLBCL (OR=7.6, 95% CI 4.5–13.1; p-trend=7.2 × 10−20). IL1RA and IL-12p40 also showed similar associations for DLBCL and FL. In contrast, HGF, MIG, and MIP-1α had a stronger association with DLBCL compared to FL, and IL-6, IL-8, IL-10, IFN-γ, IP-10, and VEGF were only statistically significantly associated with DLBCL after accounting for multiple testing. However, in PCA modeling, a cytokine profile based on sIL-2R, IL-1RA, MIG, IP-10, IL-8, and IL-12p40 explained most of the variability between controls and both FL and DLBCL.
Conclusions
We identified some single cytokines unique to DLBCL, but overall cytokine associations were more similar than distinct for DLBCL and FL. While these data are limited by concerns of reverse causality, they do suggest cytokines and cytokine profiles that can be prioritized in future studies.
doi:10.1016/j.cyto.2012.08.028
PMCID: PMC3483382  PMID: 23010502
non-Hodgkin lymphoma; biomarkers; cytokines; case-control
22.  A Two-Stage Evaluation of Genetic Variation in Immune and Inflammation Genes with Risk of Non-Hodgkin Lymphoma Identifies New Susceptibility Locus in 6p21.3 Region 
Background
Non-Hodgkin lymphoma (NHL) is a malignancy of lymphocytes, and there is growing evidence for a role of germline genetic variation in immune genes in NHL etiology.
Methods
To identify susceptibility immune genes, we conducted a 2-stage analysis of single nucleotide polymorphisms (SNPs) from 1,253 genes using the Immune and Inflammation Panel. In Stage 1, we genotyped 7,670 SNPs in 425 NHL cases and 465 controls, and in Stage 2 we genotyped the top 768 SNPs on an additional 584 cases and 768 controls. The association of individual SNPs with NHL risk from a log-additive model was assessed using the Odds Ratios (ORs) and 95% confidence intervals (CI).
Results
In the pooled analysis, only the TAP2 coding SNP rs241447 (MAF=0.26; Thr655Ala) at 6p21.3 (OR=1.34, 95%CI 1.17-1.53) achieved statistical significance after accounting for multiple testing (p=3.1 × 10−5). The TAP2 SNP was strongly associated with follicular lymphoma (FL, OR=1.82, 95%CI 1.46-2.26; p=6.9 × 10−8), and was independent of other known loci (rs10484561 and rs2647012) from this region. The TAP2 SNP was also associated with diffuse large B-cell lymphoma (DLBCL, OR=1.38, 95% CI 1.08-1.77; p=0.011), but not chronic lymphocytic leukemia (OR=1.08; 95% CI 0.88-1.32). Higher TAP2 expression was associated with the risk allele in both FL and DLBCL tumors.
Conclusion
Genetic variation in TAP2 was associated with NHL risk overall, and FL risk in particular, and this was independent of other established loci from 6p21.3.
Impact
Genetic variation in antigen presentation of HLA class I molecules may play a role in lymphomagenesis.
doi:10.1158/1055-9965.EPI-12-0696
PMCID: PMC3467356  PMID: 22911334
genetics; non-Hodgkin lymphoma; immune function; single nucleotide polymorphisms
23.  Elevated Pretreatment Serum Levels of Interferon-inducible Protein-10 (CXCL10) Predict Disease Relapse and Prognosis in Diffuse Large B-Cell Lymphoma Patients 
American journal of hematology  2012;87(9):865-869.
While standard clinical prognostic factors predict outcome in diffuse large B-cell lymphoma (DLBCL), predicting the outcome of patients might be further refined using biological factors. We tested whether serum cytokines could provide prognostic information in DLBCL patients. Thirty cytokines were measured in pre-treatment samples from newly diagnosed DLBCL patients using a multiplex ELISA. Sixty-nine patients treated with R-CHOP plus epratuzumab were used in an initial cohort and 185 patients treated with standard R-CHOP served as a subsequent validation cohort. In the initial cohort, elevated serum IL-10 (interleukin-10; HR=6.6, p=0.022), GM-CSF (granulocyte macrophage colony-stimulating factor; HR=10.8, p=0.027) and IP-10 (interferon-inducible protein-10, CXCL10; HR=3.32, p=0.015) were associated with event-free survival (EFS). An identical analysis of the subsequent validation cohort confirmed that elevated serum levels of IP-10 were strongly associated with a poor EFS (HR=2.42, p= 0.0007); and also identified IL-8 (interleukin-8; HR=3.40, p= 0.00002) and IL-2R (interleukin-2 receptor, CD25; HR=2.59, p= 0.0012) as significantly associated with prognosis. The prognostic significance of elevated IP-10 remained significant after adjustment for the International Prognostic Index (IPI; EFS – HR 1.99, p=0.009, overall survival- HR 1.93, p=0.021). Elevated pretreatment serum IP-10 levels are therefore associated with an increased likelihood of disease relapse and an inferior survival in patients with DLBCL.
doi:10.1002/ajh.23259
PMCID: PMC3429646  PMID: 22674570
IP-10; CXCL10; cytokines; diffuse large B-cell lymphoma; prognosis
24.  Germline Variation in Complement Genes and Event-Free Survival in Follicular and Diffuse Large B-Cell Lymphoma 
American journal of hematology  2012;87(9):880-885.
The complement pathway plays a central role in innate immunity, and also functions as a regulator of the overall immune response. We evaluated whether polymorphisms in complement genes are associated with event-free survival (EFS) in follicular (FL) and diffuse large B-cell (DLBCL) lymphoma. We genotyped 167 single nucleotide polymorphisms (SNPs) from 30 complement pathway genes in a prospective cohort study of newly diagnosed FL (N=107) and DLBCL (N=82) patients enrolled at the Mayo Clinic from 2002–2005. Cox regression was used to estimate Hazard Ratios (HRs) for individual SNPs with EFS, adjusting for FLIPI or IPI and treatment. For gene-level analyses, we used a principal components based gene-level test. In gene-level analyses for FL EFS, CFH (p=0.009), CD55 (p=0.006), CFHR5 (p=0.01), C9 (p=0.02), CFHR1 (p=0.03), and CD46 (p=0.03) were significant at p<0.05, and these genes remained noteworthy after accounting for multiple testing (q<0.15). SNPs in CFH, CFHR1, and CFHR5 showed stronger associations among patients receiving any rituximab, while SNPs from CD55 and CD46 showed stronger associations among patients who were observed. For DLBCL, only CLU (p=0.001) and C7 (p=0.03) were associated with EFS, but did not remain noteworthy after accounting for multiple testing (q>0.15). Genes from the Regulators of Complement Activation (CFH, CD55, CFHR1, CFHR5, CD46) at 1q32-q32.1, along with C9, were associated with FL EFS after adjusting for clinical variables, and if replicated, these findings add further support for the role of host innate immunity in FL prognosis.
doi:10.1002/ajh.23273
PMCID: PMC3586263  PMID: 22718493
non-Hodgkin lymphoma; complement pathway; SNPs; prognosis; prospective cohort
25.  A BAFF-R mutation associated with non-Hodgkin lymphoma alters TRAF recruitment and reveals new insights into BAFF-R signaling 
The Journal of Experimental Medicine  2010;207(12):2569-2579.
A BAFF receptor mutation associated with non-Hodgkin lymphoma provides new insight into the proximal players of normal BAFF-R signaling.
The cytokine B cell activating factor (BAFF) and its receptor, BAFF receptor (BAFF-R), modulate signaling cascades critical for B cell development and survival. We identified a novel mutation in TNFRSF13C, the gene encoding human BAFF-R, that is present in both tumor and germline tissue from a subset of patients with non-Hodgkin lymphoma. This mutation encodes a His159Tyr substitution in the cytoplasmic tail of BAFF-R adjacent to the TRAF3 binding motif. Signaling through this mutant BAFF-R results in increased NF-κB1 and NF-κB2 activity and increased immunoglobulin production compared with the wild-type (WT) BAFF-R. This correlates with increased TRAF2, TRAF3, and TRAF6 recruitment to His159Tyr BAFF-R. In addition, we document a requirement for TRAF6 in WT BAFF-R signaling. Together, these data identify a novel lymphoma-associated mutation in human BAFF-R that results in NF-κB activation and reveals TRAF6 as a necessary component of normal BAFF-R signaling.
doi:10.1084/jem.20100857
PMCID: PMC2989778  PMID: 21041452

Results 1-25 (37)