PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-13 (13)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Immunologic aspects of monoclonal B cell lymphocytosis 
Immunologic research  2011;49(0):269-280.
Monoclonal B cell lymphocytosis (MBL) is a preclinical hematologic condition wherein small numbers of clonal B cells can be detected in the blood of otherwise healthy individuals. Most MBL have a surface immunophenotype nearly identical to that of chronic lymphocytic leukemia (CLL), though other phenotypes can also be identified. MBL has been shown to be a precursor state for CLL, but most MBL clones are quite small and apparently have minimal potential to progress of CLL or other B cell lymphoproliferative disorder (B-LPD). The investigation of MBL as a precursor state for CLL will likely lead to important insights into mechanisms of disease pathogenesis. The review will cover clinical and translational aspects of MBL, with a particular emphasis on the prevalence of MBL; the relationship between MBL, CLL, and other B-LPDs; and the capacity of MBL to modulate the normal B and T cell compartments.
doi:10.1007/s12026-010-8188-4
PMCID: PMC4102133  PMID: 21161696
Monoclonal B Lymphocytosis; Chronic Lymphocytic Leukemia; Non-Hodgkin’s Lymphoma; B Cell Receptor; B Cell Development
2.  Ofatumumab-based chemoimmunotherapy is effective and well tolerated in patients with previously untreated CLL 
Cancer  2013;119(21):3788-3796.
Purpose
Although rituximab-based chemoimmunotherapy (CIT) has substantially improved clinical outcomes in chronic lymphocytic leukemia (CLL), only 40-50% of patients achieve a complete remission (CR). There remains interest in identifying new approaches to improve the effectiveness of CIT. Ofatumumab is a fully human anti-CD20 monoclonal antibody with greater apparent single agent activity than rituximab in CLL patients.
Methods
Previously untreated CLL patients in need of therapy received 6 cycles of CIT induction with pentostatin, cyclophosphamide and ofatumumab (PCO) followed by response assessment.
Results
Of the 48 patients enrolled, 77% completed PCO induction. Adverse events during induction included grade 3+ hematologic toxicity (27%) and grade 3+ non-hematologic toxicity (23%). Median CD4 count post induction and 6 months later were 186 ×106/L and 272 ×106/L. The overall response rate was 96% (46/48) and the CR rate was 46% (22/48). Among the 38 patients who underwent minimal residual disease (MRD) evaluation, 7 (18%) were MRD negative. After median follow-up of 24 months, 10 (21%) patients have progressed and 8 (17%) have required retreatment. The efficacy and toxicity of ofatumumab-based CIT compare favorably to our historical trials of rituximab-based CIT using an identical chemotherapy backbone (n=64). Time to retreatment also appeared longer for ofatumumab-based CIT (free of retreatment at 24 months: 86% [95%CI: 75-99] vs 68% [95% CI: 56-81]).
Conclusion
Ofatumumab-based CIT is well tolerated in patients with previously untreated CLL. The efficacy of ofatumumab-based CIT compares favorably to historical trials of rituximab-based CIT suggesting randomized trials comparing ofatumumab-based CIT and rituximab-based CIT should be considered.
doi:10.1002/cncr.28292
PMCID: PMC3894149  PMID: 23922059
chronic lymphocytic leukemia(CLL; small lymphocytic lymphoma(SLL); treatment; ofatumumab; chemoimmunotherapy
3.  Mapping of the IRF8 gene identifies a 3’ UTR variant associated with risk of chronic lymphocytic leukemia but not other common non-Hodgkin lymphoma subtypes 
Background
Our genome-wide association study (GWAS) of chronic lymphocytic leukemia (CLL) identified 4 highly-correlated intronic variants within the IRF8 gene that were associated with CLL. These results were further supported by a recent meta-analysis of our GWAS with two other GWAS of CLL, supporting the IRF8 gene as a strong candidate for CLL risk.
Methods
To refine the genetic association of CLL risk, we performed Sanger sequencing of IRF8 in 94 CLL cases and 96 controls. We then performed fine-mapping by genotyping 39 variants (of which 10 were identified from sequencing) in 745 CLL cases and 1521 controls. We also assessed these associations with risk of other non-Hodgkin lymphoma (NHL) subtypes.
Results
The strongest association with CLL risk was observed with a common SNP located within the 3’ UTR of IRF8 (rs1044873, log additive odds ratio = 0.7, P=1.81×10−6). This SNP was not associated with the other NHL subtypes (all P>0.05).
Conclusions
We provide evidence that rs1044873 in the IRF8 gene accounts for the initial GWAS signal for CLL risk. This association appears to be unique to CLL with little support for association with other common NHL subtypes. Future work is needed to assess functional role of IRF8 in CLL etiology.
Impact
These data provide support that a functional variant within the 3’ UTR of IRF8 may be driving the GWAS signal seen on 16q24.1 for CLL risk.
doi:10.1158/1055-9965.EPI-12-1217
PMCID: PMC3596428  PMID: 23307532
CLL; NHL; SNPs; IRF8; risk locus
4.  Monoclonal B-cell Lymphocytosis (MBL): Biology, Natural History, and Clinical Management 
Leukemia  2010;24(3):512-520.
Chronic lymphocytic leukemia (CLL) and the other low grade non-Hodgkin lymphomas (NHL) are among the most common lymphoid malignancies. Recent studies suggest that more than 4% of the general population over age 40 harbor a population of clonal B-cells with the phenotype of either CLL or another B-cell malignancy, a condition now designated monoclonal B-cell lymphocytosis (MBL). Although all cases of CLL appear to be preceded by MBL, the majority of individuals with MBL will not develop a hematologic malignancy. The biologic characteristics and clinical implications of MBL appear to differ based on whether it is identified during the diagnostic evaluation of lymphocytosis or incidentally discovered through screening of individuals with normal lymphocyte counts as part of research studies using highly sensitive detection methods. In the present manuscript we provide a state of the art review on the prevalence, nomenclature, biology, natural history, and clinical management of MBL.
doi:10.1038/leu.2009.287
PMCID: PMC3913172  PMID: 20090778
monoclonal B-cell lymphocytosis (MBL); chronic lymphocytic leukemia (CLL); prognosis; biology; management
5.  Genome-wide Association Study Identifies Multiple Risk Loci for Chronic Lymphocytic Leukemia 
Berndt, Sonja I. | Skibola, Christine F. | Joseph, Vijai | Camp, Nicola J. | Nieters, Alexandra | Wang, Zhaoming | Cozen, Wendy | Monnereau, Alain | Wang, Sophia S. | Kelly, Rachel S. | Lan, Qing | Teras, Lauren R. | Chatterjee, Nilanjan | Chung, Charles C. | Yeager, Meredith | Brooks-Wilson, Angela R. | Hartge, Patricia | Purdue, Mark P. | Birmann, Brenda M. | Armstrong, Bruce K. | Cocco, Pierluigi | Zhang, Yawei | Severi, Gianluca | Zeleniuch-Jacquotte, Anne | Lawrence, Charles | Burdette, Laurie | Yuenger, Jeffrey | Hutchinson, Amy | Jacobs, Kevin B. | Call, Timothy G. | Shanafelt, Tait D. | Novak, Anne J. | Kay, Neil E. | Liebow, Mark | Wang, Alice H. | Smedby, Karin E | Adami, Hans-Olov | Melbye, Mads | Glimelius, Bengt | Chang, Ellen T. | Glenn, Martha | Curtin, Karen | Cannon-Albright, Lisa A. | Jones, Brandt | Diver, W. Ryan | Link, Brian K. | Weiner, George J. | Conde, Lucia | Bracci, Paige M. | Riby, Jacques | Holly, Elizabeth A. | Smith, Martyn T. | Jackson, Rebecca D. | Tinker, Lesley F. | Benavente, Yolanda | Becker, Nikolaus | Boffetta, Paolo | Brennan, Paul | Foretova, Lenka | Maynadie, Marc | McKay, James | Staines, Anthony | Rabe, Kari G. | Achenbach, Sara J. | Vachon, Celine M. | Goldin, Lynn R | Strom, Sara S. | Lanasa, Mark C. | Spector, Logan G. | Leis, Jose F. | Cunningham, Julie M. | Weinberg, J. Brice | Morrison, Vicki A. | Caporaso, Neil E. | Norman, Aaron D. | Linet, Martha S. | De Roos, Anneclaire J. | Morton, Lindsay M. | Severson, Richard K. | Riboli, Elio | Vineis, Paolo | Kaaks, Rudolph | Trichopoulos, Dimitrios | Masala, Giovanna | Weiderpass, Elisabete | Chirlaque, María-Dolores | Vermeulen, Roel C H | Travis, Ruth C. | Giles, Graham G. | Albanes, Demetrius | Virtamo, Jarmo | Weinstein, Stephanie | Clavel, Jacqueline | Zheng, Tongzhang | Holford, Theodore R | Offit, Kenneth | Zelenetz, Andrew | Klein, Robert J. | Spinelli, John J. | Bertrand, Kimberly A. | Laden, Francine | Giovannucci, Edward | Kraft, Peter | Kricker, Anne | Turner, Jenny | Vajdic, Claire M. | Ennas, Maria Grazia | Ferri, Giovanni M. | Miligi, Lucia | Liang, Liming | Sampson, Joshua | Crouch, Simon | Park, Ju-hyun | North, Kari E. | Cox, Angela | Snowden, John A. | Wright, Josh | Carracedo, Angel | Lopez-Otin, Carlos | Bea, Silvia | Salaverria, Itziar | Martin, David | Campo, Elias | Fraumeni, Joseph F. | de Sanjose, Silvia | Hjalgrim, Henrik | Cerhan, James R. | Chanock, Stephen J. | Rothman, Nathaniel | Slager, Susan L.
Nature genetics  2013;45(8):868-876.
doi:10.1038/ng.2652
PMCID: PMC3729927  PMID: 23770605
6.  Chronic Lymphocytic Leukemia and Regulatory B Cells Share IL-10-Competence and Immunosuppressive Function 
Leukemia  2012;27(1):170-182.
Chronic lymphocytic leukemia (CLL) can be immunosuppressive in humans and mice, and CLL cells share multiple phenotypic markers with regulatory B cells that are competent to produce IL-10 (B10 cells). To identify functional links between CLL cells and regulatory B10 cells, the phenotypes and abilities of leukemia cells from 93 patients with overt CLL to express IL-10 were assessed. CD5+ CLL cells purified from 90% of the patients were IL-10-competent and secreted IL-10 following appropriate ex vivo stimulation. Serum IL-10 levels were also significantly elevated in CLL patients. IL-10-competent cell frequencies were higher among CLLs with IgVH mutations, and correlated positively with TCL1 expression. In the TCL1-transgenic (TCL1-Tg) mouse model of CLL, IL-10-competent B cells with the cell-surface phenotype of B10 cells expanded significantly with age, preceding the development of overt, CLL-like leukemia. Malignant CLL cells in TCL1-Tg mice also shared immunoregulatory functions with mouse and human B10 cells. Serum IL-10 levels varied in TCL1-Tg mice, but in vivo low-dose lipopolysaccharide treatment induced IL-10 expression in CLL cells and high levels of serum IL-10. Thus, malignant IL-10-competent CLL cells exhibit regulatory functions comparable to normal B10 cells that may contribute to the immunosuppression observed in patients and TCL1-Tg mice.
doi:10.1038/leu.2012.165
PMCID: PMC3742013  PMID: 22713648
B10 cells; regulatory B cell; CLL; leukemia; IL-10; immunosuppression
7.  Common variants within 6p21.31 locus are associated with chronic lymphocytic leukaemia and potentially other non-Hodgkin lymphoma subtypes 
British journal of haematology  2012;159(5):572-576.
Summary
A recent meta-analysis of three genome-wide association studies of chronic lymphocytic leukaemia (CLL) identified two common variants at the 6p21.31 locus that are associated with CLL risk. To verify and further explore the association of these variants with other non-Hodgkin lymphoma (NHL) subtypes, we genotyped 1196 CLL cases, 1699 NHL cases, and 2410 controls. We found significant associations between the 6p21.31 variants and CLL risk (rs210134: P=0.01; rs210142: P=6.8×10−3). These variants also showed a trend towards association with some of the other NHL subtypes. Our results validate the prior work and support specific genetic pathways for risk among NHL subtypes.
doi:10.1111/bjh.12070
PMCID: PMC3614403  PMID: 23025533
CLL; NHL; SNPs; BAK1; risk locus
8.  Immnuophenotypic and Gene Expression Analysis of Monoclonal B Cell Lymphocytosis Shows Biologic Characteristics Associated With Good Prognosis CLL 
Monoclonal B cell lymphocytosis (MBL) is a hematologic condition wherein small B cell clones can be detected in the blood of asymptomatic individuals. Most MBL have an immunophenotype similar to chronic lymphocytic leukemia (CLL), and “CLL-like” MBL is a precursor to CLL. We used flow cytometry to identify MBL from unaffected members of CLL kindreds. We identified 101 MBL cases from 622 study subjects; of these, 82 individuals with MBL were further characterized. Ninety-one unique MBL clones were detected: 73 CLL-like MBL (CD5+CD20dimsIgdim), 11 atypical MBL (CD5+CD20+sIg+), and 7 CD5neg MBL (CD5negCD20+sIgneg). Extended immunophenotypic characterization of these MBL subtypes was performed, and significant differences in cell surface expression of CD23, CD49d, CD79b, and FMC-7 were observed among the groups. Markers of risk in CLL such as CD38, ZAP70, and CD49d were infrequently expressed in CLL-like MBL, but were expressed in the majority of atypical MBL. Interphase cytogenetics was performed in 35 MBL cases, and del 13q14 was most common (22/30 CLL-like MBL cases). Gene expression analysis using oligonucleotide arrays was performed on 7 CLL-like MBL, and showed activation of B cell receptor associated pathways. Our findings underscore the diversity of MBL subtypes and further clarify the relationship between MBL and other lymphoproliferative disorders.
doi:10.1038/leu.2011.117
PMCID: PMC3164475  PMID: 21617698
9.  Single cell analysis reveals oligoclonality among “low count” monoclonal B cell lymphocytosis 
Monoclonal B cell lymphocytosis (MBL) is a pre-clinical hematologic syndrome characterized by small accumulations of CD5+ B lymphocytes. Most MBL share phenotypic characteristics with chronic lymphocytic leukemia (CLL). While some MBL progress to CLL, most MBL have apparently limited potential for progression to CLL, particularly those MBL with normal absolute B cell counts (“low count” MBL). Most CLL are monoclonal and it is not known whether MBL are monoclonal or oligoclonal; this is important because it is unclear whether MBL represent indolent CLL or represent a distinct pre-malignant precursor prior to the development of CLL. We used flow cytometry analysis and sorting to determine immunophenotypic characteristics, clonality, and molecular features of MBL from familial CLL kindreds. Single cell analysis indicated 4 of 6 low count MBL consisted of two or more unrelated clones; the other 2 MBL were monoclonal. 87% of low count MBL clones had mutated immunoglobulin genes, and no immunoglobulin heavy chain rearrangements of VH family 1 were observed. Some MBL were diversified, clonally related populations with evidence of antigen-drive. We conclude that while low count MBL share many phenotypic characteristics with CLL, many MBL are oligoclonal. This supports a model for step-wise development of MBL into CLL.
doi:10.1038/leu.2009.192
PMCID: PMC2806490  PMID: 19946263
Monoclonal B Lymphocytosis; Chronic Lymphocytic Leukemia; B Cell Repertoire; Human B Cells
10.  Oligoclonal TCRVβ gene usage among CD8+ T cells in monoclonal B lymphocytosis and CLL 
British journal of haematology  2009;145(4):535-537.
doi:10.1111/j.1365-2141.2009.07635.x
PMCID: PMC2754701  PMID: 19298246
Chronic lymphocytic leukemia; monoclonal B lymphocytosis; T cell repertoire; spectratyping
11.  Common Occurrence of Monoclonal B-cell Lymphocytosis Among Members of High-Risk CLL Families 
British journal of haematology  2010;151(2):152-158.
Summary
Monoclonal B-cell lymphocytosis (MBL) is an asymptomatic haematological condition characterized by low absolute levels of B-cell clones with a surface immunophenotype similar to that of chronic lymphocytic leukaemia (CLL). In the general population, MBL increases with age with a prevalence of 5–9% in individuals over age 60 years. It has been reported to be higher among first-degree relatives from CLL families. We report results of multi-parameter flow cytometry among 505 first-degree relatives with no personal history of lymphoproliferative disease from 140 families having at least two cases of CLL. Seventeen percent of relatives had MBL. Age was the most important determinant where the probability for developing MBL by age 90 years was 61%. MBL clustered in certain families but clustering was independent of the number of known CLL cases in a family. As is the case with CLL, males had a significantly higher risk for MBL than did females (p=0.04). MBL patients had significantly higher mean absolute lymphocyte counts (2.4 × 109/l) and B-cell counts (0.53 × 109/l) than those with a normal B-cell immunophenotype. Our findings show that MBL occurs at a very high rate in high risk CLL families. Both the age and gender distribution of MBL are parallel to CLL, implying a shared inherited risk.
doi:10.1111/j.1365-2141.2010.08339.x
PMCID: PMC2966536  PMID: 20738309
chronic lymphocytic leukaemia; high risk families; monoclonal B-cell lymphocytosis; flow cytometry
12.  Genetic susceptibility variants for chronic lymphocytic leukemia 
Background
There is strong and consistent evidence that a genetic component contributes to the etiology of chronic lymphocytic leukemia (CLL). A recent genome-wide association study (GWAS) of CLL identified 7 genetic variants that increased the risk of CLL within a European population.
Methods
We evaluated the association of these variants, or variants in linkage disequilibrium (LD) with these variants, with CLL risk in an independent sample of 438 CLL cases and 328 controls.
Results
Of these 7 SNPs, 6 had p-trend < 0.05 and had estimated odds ratios (ORs) that were strikingly comparable to those of the previous study. Associations were seen for rs9378805 (OR = 1.47, 95% CI: 1.19, 1.80, p-trend = 0.0003) near IRF4 and rs735665 near GRAMD1B (OR= 1.47; 95% CI: 1.14, 1.89; p-trend = 0.003). However, no associations (P> 0.05) were found for rs11083846, nor were any found for any SNPs in LD with rs11083846.
Conclusions
Our results confirm the previous findings and further support the role of a genetic basis in the etiology of CLL; however, more research is needed to elucidate the causal SNP(s) and the potential manner in which these SNPs or linked SNPs function in CLL pathogenesis.
doi:10.1158/1055-9965.EPI-09-1217
PMCID: PMC2852480  PMID: 20332261
IRF4; CLL; genetic association
13.  Genome-wide association study of follicular lymphoma identifies a risk locus at 6p21.32 
Nature genetics  2010;42(8):661-664.
To identify susceptibility loci for non-Hodgkin lymphoma (NHL) subtypes, we conducted a three-stage genome-wide association study. We identified two variants associated with follicular lymphoma (FL) in 1,465 FL cases/6,958 controls at 6p21.32 (rs10484561, rs7755224, r2=1.0; combined p-values=1.12×10-29, 2.00×10-19), providing further support that MHC genetic variation influences FL susceptibility. Confirmatory evidence of a previously reported association was also found between chronic lymphocytic leukemia/small lymphocytic lymphoma and rs735665 (combined p-value=4.24×10-9).
doi:10.1038/ng.626
PMCID: PMC2913472  PMID: 20639881

Results 1-13 (13)