Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Regulation of Dendritic Cell Function in Inflammation 
Journal of Immunology Research  2015;2015:743169.
Dendritic cells (DC) are professional antigen presenting cells and link the innate and adaptive immune system. During steady state immune surveillance in skin, DC act as sentinels against commensals and invading pathogens. Under pathological skin conditions, inflammatory cytokines, secreted by surrounding keratinocytes, dermal fibroblasts, and immune cells, influence the activation and maturation of different DC populations including Langerhans cells (LC) and dermal DC. In this review we address critical differences in human DC subtypes during inflammatory settings compared to steady state. We also highlight the functional characteristics of human DC subsets in inflammatory skin environments and skin diseases including psoriasis and atopic dermatitis. Understanding the complex immunoregulatory role of distinct DC subsets in inflamed human skin will be a key element in developing novel strategies in anti-inflammatory therapy.
PMCID: PMC4503598
2.  Glycosylation of Candida albicans Cell Wall Proteins Is Critical for Induction of Innate Immune Responses and Apoptosis of Epithelial Cells 
PLoS ONE  2012;7(11):e50518.
C. albicans is one of the most common fungal pathogen of humans, causing local and superficial mucosal infections in immunocompromised individuals. Given that the key structure mediating host-C. albicans interactions is the fungal cell wall, we aimed to identify features of the cell wall inducing epithelial responses and be associated with fungal pathogenesis. We demonstrate here the importance of cell wall protein glycosylation in epithelial immune activation with a predominant role for the highly branched N-glycosylation residues. Moreover, these glycan moieties induce growth arrest and apoptosis of epithelial cells. Using an in vitro model of oral candidosis we demonstrate, that apoptosis induction by C. albicans wild-type occurs in early stage of infection and strongly depends on intact cell wall protein glycosylation. These novel findings demonstrate that glycosylation of the C. albicans cell wall proteins appears essential for modulation of epithelial immunity and apoptosis induction, both of which may promote fungal pathogenesis in vivo.
PMCID: PMC3511564  PMID: 23226301
3.  Models of oral and vaginal candidiasis based on in vitro reconstituted human epithelia 
Nature protocols  2006;1(6):2767-2773.
This protocol describes the setup, maintenance and characteristics of models of epithelial Candida infections based on well-established three-dimensional organotypic tissues of human oral and vaginal mucosa. Infection experiments are highly reproducible and can be used for the direct analysis of pathogen–epithelial cell interactions. This allows detailed investigations of Candida albicans wild type or mutant strain interaction with epithelial tissue or the evaluation of the host immune response using histological, biochemical and molecular methods. As such, the models can be utilized as a tool to investigate cellular interactions or protein and gene expression that are not complicated by non-epithelial factors. To study the impact of innate immunity or the antifungal activity of natural and non-natural compounds, the mucosal infection models can be supplemented with immune cells, antimicrobial agents or probiotic bacteria. The model requires at least 3 days to be established and can be maintained thereafter for 2–4 days.
PMCID: PMC3244617  PMID: 17406503
4.  Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis 
Microbiology (Reading, England)  2008;154(Pt 11):3266-3280.
A quantitative real-time RT-PCR system was established to identify which secreted aspartyl proteinase (SAP) genes are most highly expressed and potentially contribute to Candida albicans infection of human epithelium in vitro and in vivo. C. albicans SC5314 SAP1–10 gene expression was monitored in organotypic reconstituted human epithelium (RHE) models, monolayers of oral epithelial cells, and patients with oral (n=17) or vaginal (n=17) candidiasis. SAP gene expression was also analysed in Δsap1–3, Δsap4–6, Δefg1 and Δefg1/cph1 mutants to determine whether compensatory SAP gene regulation occurs in the absence of distinct proteinase gene subfamilies. In monolayers, RHE models and patient samples SAP9 was consistently the most highly expressed gene in wild-type cells. SAP5 was the only gene significantly upregulated as infection progressed in both RHE models and was also highly expressed in patient samples. Interestingly, the SAP4–6 subfamily was generally more highly expressed in oral monolayers than in RHE models. SAP1 and SAP2 expression was largely unchanged in all model systems, and SAP3, SAP7 and SAP8 were expressed at low levels throughout. In Δsap1–3, expression was compensated for by increased expression of SAP5, and in Δsap4–6, expression was compensated for by SAP2: both were observed only in the oral RHE. Both Δsap1–3 and Δsap4–6 mutants caused RHE tissue damage comparable to the wild-type. However, addition of pepstatin A reduced tissue damage, indicating a role for the Sap family as a whole in inducing epithelial damage. With the hypha-deficient mutants, RHE tissue damage was significantly reduced in both Δefg1/cph1 and Δefg1, but SAP5 expression was only dramatically reduced in Δefg1/cph1 despite the absence of hyphal growth in both mutants. This indicates that hypha formation is the predominant cause of tissue damage, and that SAP5 expression can be hypha-independent and is not solely controlled by the Efg1 pathway but also by the Cph1 pathway. This is believed to be the first study to fully quantify SAP gene expression levels during human mucosal infections; the results suggest that SAP5 and SAP9 are the most highly expressed proteinase genes in vivo. However, the overall contribution of the Sap1–3 and Sap4–6 subfamilies individually in inducing epithelial damage in the RHE models appears to be low.
PMCID: PMC2722715  PMID: 18957581
5.  Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling 
The Journal of Clinical Investigation  2007;117(12):3664-3672.
Mammalian TLRs are central mediators of the innate immune system that instruct cells of the innate and adaptive response to clear microbial infections. Here, we demonstrate that human epithelial TLR4 directly protected the oral mucosa from fungal infection via a process mediated by polymorphonuclear leukocytes (PMNs). In an in vitro epithelial model of oral candidiasis, the fungal pathogen Candida albicans induced a chemoattractive and proinflammatory cytokine response but failed to directly modulate the expression of genes encoding TLRs. However, the addition of PMNs to the C. albicans–infected model strongly upregulated cytoplasmic and cell-surface epithelial TLR4 expression, which correlated directly with protection against fungal invasion and cell injury. C. albicans invasion and cell injury was restored by the addition of TLR4-specific neutralizing antibodies and knockdown of TLR4 using RNA interference, even in the presence of PMNs, demonstrating the direct role of epithelial TLR4 in the protective process. Furthermore, treatment with neutralizing antibodies specific for TNF-α resulted in strongly reduced TLR4 expression accompanied by augmented epithelial cell damage and fungal invasion. To our knowledge, this is the first description of such a PMN-dependent, TLR4-mediated protective mechanism at epithelial surfaces, which may provide significant insights into how microbial infections are managed and controlled in the oral mucosa.
PMCID: PMC2066194  PMID: 17992260
6.  The Early Transcriptional Response of Human Granulocytes to Infection with Candida albicans Is Not Essential for Killing but Reflects Cellular Communications▿  
Infection and Immunity  2006;75(3):1493-1501.
Candida albicans is a polymorphic opportunistic fungus that can cause life-threatening systemic infections following hematogenous dissemination in patients susceptible to nosocomial infection. Neutrophils form part of the innate immune response, which is the first line of defense against microbes and is particularly important in C. albicans infections. To compare the transcriptional response of leukocytes exposed to C. albicans, we investigated the expression of key cytokine genes in polymorphonuclear and mononuclear leukocytes after incubation with C. albicans for 1 h. Isolated mononuclear cells expressed high levels of genes encoding proinflammatory signaling molecules, whereas neutrophils exhibited much lower levels, similar to those observed in whole blood. The global transcriptional profile of neutrophils was examined by using an immunology-biased human microarray to determine whether different morphological forms or the viability of C. albicans altered the transcriptome. Hyphal cells appeared to have the broadest effect, although the most strongly induced genes were regulated independently of morphology or viability. These genes were involved in proinflammatory cell-cell signaling, cell signal transduction, and cell growth. Generally, genes encoding known components of neutrophil granules showed no upregulation at this time point; however, lactoferrin, a well-known candidacidal peptide, was secreted by neutrophils. Addition to inhibitors of RNA or protein de novo synthesis did not influence the killing activity within 30 min. These results support the general notion that neutrophils do not require gene transcription to mount an immediate and direct attack against microbes. However, neutrophils exposed to C. albicans express genes involved in communication with other immune cells.
PMCID: PMC1828553  PMID: 17145939
7.  Retinoids in the treatment of skin aging: an overview of clinical efficacy and safety 
Clinical Interventions in Aging  2006;1(4):327-348.
Aging of skin is an intricate biological process consisting of two types. While intrinsic or chronological aging is an inevitable process, photoaging involves the premature aging of skin occurring due to cumulative exposure to ultraviolet radiation. Chronological and photoaging both have clinically differentiable manifestations. Various natural and synthetic retinoids have been explored for the treatment of aging and many of them have shown histological and clinical improvement, but most of the studies have been carried out in patients presenting with photoaged skin. Amongst the retinoids, tretinoin possibly is the most potent and certainly the most widely investigated retinoid for photoaging therapy. Although retinoids show promise in the treatment of skin aging, irritant reactions such as burning, scaling or dermatitis associated with retinoid therapy limit their acceptance by patients. This problem is more prominent with tretinoin and tazarotene whereas other retinoids mainly represented by retinaldehyde and retinol are considerably less irritating. In order to minimize these side effects, various novel drug delivery systems have been developed. In particular, nanoparticles have shown a good potential in improving the stability, tolerability and efficacy of retinoids like tretinoin and retinol. However, more elaborate clinical studies are required to confirm their advantage in the delivery of topical retinoids.
PMCID: PMC2699641  PMID: 18046911
photoaging; chronological aging; tretinoin; retinaldehyde; tazarotene; nanoparticles

Results 1-7 (7)