PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (25)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Clotrimazole Dampens Vaginal Inflammation and Neutrophil Infiltration in Response to Candida albicans Infection 
Antimicrobial Agents and Chemotherapy  2013;57(10):5178-5180.
The pathology of vulvovaginal candidiasis (VVC) caused by Candida albicans is associated with a nonprotective inflammatory response and is frequently treated with clotrimazole. We investigated the mechanisms by which clotrimazole resolves VVC. Low levels of clotrimazole, which do not block fungal growth, inhibit expression of a “danger response” transcription factor, c-Fos, block production of proinflammatory cytokines, and inhibit neutrophil infiltration to the site of infection.
doi:10.1128/AAC.01244-13
PMCID: PMC3811401  PMID: 23896471
2.  Candida albicans interactions with epithelial cells and mucosal immunity 
Candida albicans interactions with epithelial cells are critical for commensal growth, fungal pathogenicity and host defence. This review will outline our current understanding of C. albicans-epithelial interactions and will discuss how this may lead to the induction of a protective mucosal immune response.
doi:10.1016/j.micinf.2011.06.009
PMCID: PMC3185145  PMID: 21801848
Candida albicans; yeast; hyphae; epithelial cells; oral; vaginal; mucosal; innate immunity; induced endocytosis; active penetration; cytokines; chemokines; commensal; pathogen
3.  Animal models of mucosal Candida infection 
FEMS microbiology letters  2008;283(2):129-139.
Rodent models of oral, vaginal and gastrointestinal Candida infection are described and discussed in terms of their scientific merits. The common feature of all experimental mucosal Candida infections is the need for some level of host immunocompromise or exogenous treatment to ensure quantitatively reproducible disease. A growing literature describes the contributions of such candidiasis models to our understanding of certain aspects of fungal virulence and host response to mucosal Candida albicans challenge. Evidence to date shows that T-lymphocyte responses dominate host immune defences to oral and gastrointestinal challenge, while other, highly compartmentalized responses defend vaginal surfaces. By contrast the study of C. albicans virulence factors in mucosal infection models has only begun to unravel the complex of attributes required to define the difference between strongly and weakly muco-invasive strains.
doi:10.1111/j.1574-6968.2008.01160.x
PMCID: PMC3244615  PMID: 18422625
animal; mucosal; epithelium; oral; model; vaginal
4.  Mucosal Immunity and Candida albicans Infection 
Interactions between mucosal surfaces and microbial microbiota are key to host defense, health, and disease. These surfaces are exposed to high numbers of microbes and must be capable of distinguishing between those that are beneficial or avirulent and those that will invade and cause disease. Our understanding of the mechanisms involved in these discriminatory processes has recently begun to expand as new studies bring to light the importance of epithelial cells and novel immune cell subsets such as Th17 T cells in these processes. Elucidating how these mechanisms function will improve our understanding of many diverse diseases and improve our ability to treat patients suffering from these conditions. In our voyage to discover these mechanisms, mucosal interactions with opportunistic commensal organisms such as the fungus Candida albicans provide insights that are invaluable. Here, we review current knowledge of the interactions between C. albicans and epithelial surfaces and how this may shape our understanding of microbial-mucosal interactions.
doi:10.1155/2011/346307
PMCID: PMC3137974  PMID: 21776285
5.  Candida albicans Cell Wall Glycosylation May Be Indirectly Required for Activation of Epithelial Cell Proinflammatory Responses ▿  
Infection and Immunity  2011;79(12):4902-4911.
Oral epithelial cells discriminate between the yeast and hyphal forms of Candida albicans via the mitogen-activated protein kinase (MAPK) signaling pathway. This occurs through phosphorylation of the MAPK phosphatase MKP1 and activation of the c-Fos transcription factor by the hyphal form. Given that fungal cell wall polysaccharides are critical in host recognition and immune activation in myeloid cells, we sought to determine whether β-glucan and N- or O-glycosylation was important in activating the MAPK/MKP1/c-Fos hypha-mediated response mechanism and proinflammatory cytokines in oral epithelial cells. Using a series of β-glucan and N- and O-mannan mutants, we found that N-mannosylation (via Δoch1 and Δpmr1 mutants) and O-mannosylation (via Δpmt1 and Δmnt1 Δmnt2 mutants), but not phosphomannan (via a Δmnn4 mutant) or β-1,2 mannosylation (via Δbmt1 to Δbmt6 mutants), were required for MKP1/c-Fos activation, proinflammatory cytokine production, and cell damage induction. However, the N- and O-mannan mutants showed reduced adhesion or lack of initial hypha formation at 2 h, resulting in little MKP1/c-Fos activation, or restricted hypha formation/pseudohyphal formation at 24 h, resulting in minimal proinflammatory cytokine production and cell damage. Further, the α-1,6-mannose backbone of the N-linked outer chain (corresponding to a Δmnn9 mutant) may be required for epithelial adhesion, while the α-1,2-mannose component of phospholipomannan (corresponding to a Δmit1 mutant) may contribute to epithelial cell damage. β-Glucan appeared to play no role in adhesion, epithelial activation, or cell damage. In summary, N- and O-mannosylation defects affect the ability of C. albicans to induce proinflammatory cytokines and damage in oral epithelial cells, but this may be due to indirect effects on fungal pathogenicity rather than mannose residues being direct activators of the MAPK/MKP1/c-Fos hypha-mediated immune response.
doi:10.1128/IAI.05591-11
PMCID: PMC3232641  PMID: 21930756
7.  Modelling the Regulation of Thermal Adaptation in Candida albicans, a Major Fungal Pathogen of Humans 
PLoS ONE  2012;7(3):e32467.
Eukaryotic cells have evolved mechanisms to sense and adapt to dynamic environmental changes. Adaptation to thermal insults, in particular, is essential for their survival. The major fungal pathogen of humans, Candida albicans, is obligately associated with warm-blooded animals and hence occupies thermally buffered niches. Yet during its evolution in the host it has retained a bona fide heat shock response whilst other stress responses have diverged significantly. Furthermore the heat shock response is essential for the virulence of C. albicans. With a view to understanding the relevance of this response to infection we have explored the dynamic regulation of thermal adaptation using an integrative systems biology approach. Our mathematical model of thermal regulation, which has been validated experimentally in C. albicans, describes the dynamic autoregulation of the heat shock transcription factor Hsf1 and the essential chaperone protein Hsp90. We have used this model to show that the thermal adaptation system displays perfect adaptation, that it retains a transient molecular memory, and that Hsf1 is activated during thermal transitions that mimic fever. In addition to providing explanations for the evolutionary conservation of the heat shock response in this pathogen and the relevant of this response to infection, our model provides a platform for the analysis of thermal adaptation in other eukaryotic cells.
doi:10.1371/journal.pone.0032467
PMCID: PMC3308945  PMID: 22448221
8.  Evaluation of the Role of Candida albicans Agglutinin-Like Sequence (Als) Proteins in Human Oral Epithelial Cell Interactions 
PLoS ONE  2012;7(3):e33362.
The fungus C. albicans uses adhesins to interact with human epithelial surfaces in the processes of colonization and pathogenesis. The C. albicans ALS (agglutinin-like sequence) gene family encodes eight large cell-surface glycoproteins (Als1-Als7 and Als9) that have adhesive function. This study utilized C. albicans Δals mutant strains to investigate the role of the Als family in oral epithelial cell adhesion and damage, cytokine induction and activation of a MAPK-based (MKP1/c-Fos) signaling pathway that discriminates between yeast and hyphae. Of the eight Δals mutants tested, only the Δals3 strain showed significant reductions in oral epithelial cell adhesion and damage, and cytokine production. High fungal:epithelial cell multiplicities of infection were able to rescue the cell damage and cytokine production phenotypes, demonstrating the importance of fungal burden in mucosal infections. Despite its adhesion, damage and cytokine induction phenotypes, the Δals3 strain induced MKP1 phosphorylation and c-Fos production to a similar extent as control cells. Our data demonstrate that Als3 is involved directly in epithelial adhesion but indirectly in cell damage and cytokine induction, and is not the factor targeted by oral epithelial cells to discriminate between the yeast and hyphal form of C. albicans.
doi:10.1371/journal.pone.0033362
PMCID: PMC3299778  PMID: 22428031
9.  Activation of MAPK/c-Fos induced responses in oral epithelial cells is specific to Candida albicans and Candida dubliniensis hyphae 
Oral epithelial cells detect the human pathogenic fungus Candida albicans via NF-κB and a bi-phasic mitogen-activated protein kinase (MAPK) signaling response. However, discrimination between C. albicans yeast and hyphal forms is mediated only by the MAPK pathway, which constitutes activation of the MAPK phosphatase MKP1 and the c-Fos transcription factor and is targeted against the hyphal form. Given that C. albicans is not the only Candida species capable of filamentation or causing mucosal infections, we sought to determine whether this MAPK/MKP1/c-Fos mediated response mechanism was activated by other pathogenic Candida species, including C. dubliniensis, C. tropicalis, C. parapsilosis, C. glabrata and C. krusei. Although all Candida species activated the NF-κB signaling pathway, only C. albicans and C. dubliniensis were capable of inducing MKP1 and c-Fos activation, which directly correlated with hypha formation. However, only C. albicans strongly induced cytokine production (G-CSF, GM-CSF, IL-6 and IL-1α) and cell damage. Candida dubliniensis, C. tropicalis and C. parapsilosis were also capable of inducing IL-1α and this correlated with mild cell damage and was dependent upon fungal burdens. Our data demonstrate that activation of the MAPK/MKP1/c-Fos pathway in oral epithelial cells is specific to C. dubliniensis and C. albicans hyphae.
doi:10.1007/s00430-011-0209-y
PMCID: PMC3257392  PMID: 21706283
Candida albicans; Candida dubliniensis; Hypha formation; MAPK; MKP1; c-Fos; NF-κB; Oral epithelium; Innate immunity
10.  Candida albicans HWP1 gene expression and host antibody responses in colonization and disease 
Journal of medical microbiology  2006;55(Pt 10):1323-1327.
In vivo expression of the developmentally regulated Candida albicans hyphal wall protein 1 (HWP1) gene was analysed in human subjects who were culture positive for C. albicans and had oral symptoms (n=40) or were asymptomatic (n=29), or had vaginal symptoms (n=40) or were asymptomatic (n=29). HWP1 mRNA was present regardless of symptoms, implicating hyphal and possibly pseudohyphal forms in mucosal carriage as well as disease. As expected, in control subjects without oral symptoms (n=10) and without vaginal symptoms (n=10) who were culture negative in oral and vaginal samples, HWP1 mRNA was not detected. However, exposure to Hwp1 in healthy culture-negative controls, as well as in oral candidiasis and asymptomatic mucosal infections, was shown by the existence of local salivary and systemic adaptive antibody responses to Hwp1. The results are consistent with a role for Hwp1 in gastrointestinal colonization as well as in mucosal symptomatic and asymptomatic infections. Overall, Hwp1 and hyphal growth forms appear to be important factors in benign and invasive interactions of C. albicans with human hosts.
doi:10.1099/jmm.0.46737-0
PMCID: PMC3244616  PMID: 17005778
11.  Models of oral and vaginal candidiasis based on in vitro reconstituted human epithelia 
Nature protocols  2006;1(6):2767-2773.
This protocol describes the setup, maintenance and characteristics of models of epithelial Candida infections based on well-established three-dimensional organotypic tissues of human oral and vaginal mucosa. Infection experiments are highly reproducible and can be used for the direct analysis of pathogen–epithelial cell interactions. This allows detailed investigations of Candida albicans wild type or mutant strain interaction with epithelial tissue or the evaluation of the host immune response using histological, biochemical and molecular methods. As such, the models can be utilized as a tool to investigate cellular interactions or protein and gene expression that are not complicated by non-epithelial factors. To study the impact of innate immunity or the antifungal activity of natural and non-natural compounds, the mucosal infection models can be supplemented with immune cells, antimicrobial agents or probiotic bacteria. The model requires at least 3 days to be established and can be maintained thereafter for 2–4 days.
doi:10.1038/nprot.2006.474
PMCID: PMC3244617  PMID: 17406503
12.  Murine model of concurrent oral and vaginal Candida albicans colonization to study epithelial host–pathogen interactions 
We report the creation of a new low-estrogen murine model of concurrent oral and vaginal C. albicans colonization that resembles human candidal carriage at both mucosal sites. Weekly estrogen administration of 5 μg intramuscular and subcutaneously was optimal for enhancement of oral colonization and was essential for vaginal colonization. In BALB/c mice, a number of C. albicans clinical isolates (n = 3) colonized both oral and/or vaginal sites, but only strain 529L colonized 100% of mice persistently for over 5 weeks. Laboratory strains SC5314 and NCPF 3153 did not colonize the model; however, NCPF 3156 showed vaginal colonization up to week 5. Prior passaging through mice enhanced subsequent colonization of SC5314. Intranasal immunization with a C. albicans virulence antigen (secreted aspartyl proteinase 2) significantly reduced or abolished the fungal burden orally and vaginally by week 2 and 7. Our concurrent model of mucosal colonization reduces the numbers of experimental mice by half, can be used to assess potential vaccine candidates, and permits the detailed analysis of host–fungal interactions during the natural state of Candida colonization.
doi:10.1016/j.micinf.2007.01.012
PMCID: PMC3242973  PMID: 17383212
Candida albicans; Animal model; Oral; Vaginal
13.  MAPK, MKP1 and c-Fos Discriminate Candida albicans Yeast from Hyphae in Epithelial Cells 
Cell host & microbe  2010;8(3):225-235.
SUMMARY
Host mechanisms enabling discrimination between the commensal and pathogenic states of opportunistic pathogens are critical in mucosal defense and homeostasis. Here, we demonstrate that oral epithelial cells orchestrate an innate response to the human fungal pathogen Candida albicans via NF-κB and a bi-phasic MAPK response. Activation of NF-κB and the first MAPK phase, constituting c-Jun activation, is independent of morphology and due to the recognition of fungal cell wall structures. Activation of the second MAPK phase, constituting MKP1 and c-Fos activation, is dependent upon hypha-formation and fungal burdens, and correlates with proinflammatory responses. This MAPK-based discriminatory pathway may provide a mechanism for epithelial tissues to remain quiescent in the presence of low fungal burdens whilst responding specifically and strongly to damage-inducing hyphae when burdens increase. MAPK/MKP1/c-Fos activation may thus comprise a `danger response' pathway in vivo and may be critical in identifying when this normally commensal fungus has become pathogenic.
doi:10.1016/j.chom.2010.08.002
PMCID: PMC2991069  PMID: 20833374
14.  A Biphasic Innate Immune MAPK Response Discriminates between the Yeast and Hyphal Forms of Candida albicans in Epithelial Cells 
Cell Host & Microbe  2010;8(3):225-235.
Summary
Discriminating between commensal and pathogenic states of opportunistic pathogens is critical for host mucosal defense and homeostasis. The opportunistic human fungal pathogen Candida albicans is also a constituent of the normal oral flora and grows either as yeasts or hyphae. We demonstrate that oral epithelial cells orchestrate an innate response to C. albicans via NF-κB and a biphasic MAPK response. Activation of NF-κB and the first MAPK phase, constituting c-Jun activation, is independent of morphology and due to fungal cell wall recognition. Activation of the second MAPK phase, constituting MKP1 and c-Fos activation, is dependent upon hypha formation and fungal burdens and correlates with proinflammatory responses. Such biphasic response may allow epithelial tissues to remain quiescent under low fungal burdens while responding specifically and strongly to damage-inducing hyphae when burdens increase. MAPK/MKP1/c-Fos activation may represent a “danger response” pathway that is critical for identifying and responding to the pathogenic switch of commensal microbes.
Highlights
► NF-κB and MAPK control epithelial effector responses against Candida albicans ► c-Jun activation is independent of morphology and due to fungal cell wall recognition ► MAPK/MKP-1/c-Fos pathway activation is dependent on fungal hyphae and burdens ► MAPK discriminatory response may dictate C. albicans mucosal colonization in vivo
doi:10.1016/j.chom.2010.08.002
PMCID: PMC2991069  PMID: 20833374
15.  Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis 
Microbiology (Reading, England)  2008;154(Pt 11):3266-3280.
A quantitative real-time RT-PCR system was established to identify which secreted aspartyl proteinase (SAP) genes are most highly expressed and potentially contribute to Candida albicans infection of human epithelium in vitro and in vivo. C. albicans SC5314 SAP1–10 gene expression was monitored in organotypic reconstituted human epithelium (RHE) models, monolayers of oral epithelial cells, and patients with oral (n=17) or vaginal (n=17) candidiasis. SAP gene expression was also analysed in Δsap1–3, Δsap4–6, Δefg1 and Δefg1/cph1 mutants to determine whether compensatory SAP gene regulation occurs in the absence of distinct proteinase gene subfamilies. In monolayers, RHE models and patient samples SAP9 was consistently the most highly expressed gene in wild-type cells. SAP5 was the only gene significantly upregulated as infection progressed in both RHE models and was also highly expressed in patient samples. Interestingly, the SAP4–6 subfamily was generally more highly expressed in oral monolayers than in RHE models. SAP1 and SAP2 expression was largely unchanged in all model systems, and SAP3, SAP7 and SAP8 were expressed at low levels throughout. In Δsap1–3, expression was compensated for by increased expression of SAP5, and in Δsap4–6, expression was compensated for by SAP2: both were observed only in the oral RHE. Both Δsap1–3 and Δsap4–6 mutants caused RHE tissue damage comparable to the wild-type. However, addition of pepstatin A reduced tissue damage, indicating a role for the Sap family as a whole in inducing epithelial damage. With the hypha-deficient mutants, RHE tissue damage was significantly reduced in both Δefg1/cph1 and Δefg1, but SAP5 expression was only dramatically reduced in Δefg1/cph1 despite the absence of hyphal growth in both mutants. This indicates that hypha formation is the predominant cause of tissue damage, and that SAP5 expression can be hypha-independent and is not solely controlled by the Efg1 pathway but also by the Cph1 pathway. This is believed to be the first study to fully quantify SAP gene expression levels during human mucosal infections; the results suggest that SAP5 and SAP9 are the most highly expressed proteinase genes in vivo. However, the overall contribution of the Sap1–3 and Sap4–6 subfamilies individually in inducing epithelial damage in the RHE models appears to be low.
doi:10.1099/mic.0.2008/022293-0
PMCID: PMC2722715  PMID: 18957581
16.  Mixed Candida albicans strain populations in colonized and infected mucosal tissues 
Fems Yeast Research  2008;8(8):1334-1338.
Multilocus sequence typing of six Candida albicans colonies from primary isolation plates revealed instances of colony-to-colony microvariation and carriage of two strain types in single oropharyngeal and vaginal samples. Higher rates of colony variation in commensal samples suggest selection of types from mixed populations either in the shift to pathogenicity or the response to antifungal treatment.
doi:10.1111/j.1567-1364.2008.00438.x
PMCID: PMC2667310  PMID: 18795958
Candida albicans; MLST; strain typing; epidemiology
17.  Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling 
The Journal of Clinical Investigation  2007;117(12):3664-3672.
Mammalian TLRs are central mediators of the innate immune system that instruct cells of the innate and adaptive response to clear microbial infections. Here, we demonstrate that human epithelial TLR4 directly protected the oral mucosa from fungal infection via a process mediated by polymorphonuclear leukocytes (PMNs). In an in vitro epithelial model of oral candidiasis, the fungal pathogen Candida albicans induced a chemoattractive and proinflammatory cytokine response but failed to directly modulate the expression of genes encoding TLRs. However, the addition of PMNs to the C. albicans–infected model strongly upregulated cytoplasmic and cell-surface epithelial TLR4 expression, which correlated directly with protection against fungal invasion and cell injury. C. albicans invasion and cell injury was restored by the addition of TLR4-specific neutralizing antibodies and knockdown of TLR4 using RNA interference, even in the presence of PMNs, demonstrating the direct role of epithelial TLR4 in the protective process. Furthermore, treatment with neutralizing antibodies specific for TNF-α resulted in strongly reduced TLR4 expression accompanied by augmented epithelial cell damage and fungal invasion. To our knowledge, this is the first description of such a PMN-dependent, TLR4-mediated protective mechanism at epithelial surfaces, which may provide significant insights into how microbial infections are managed and controlled in the oral mucosa.
doi:10.1172/JCI28115
PMCID: PMC2066194  PMID: 17992260
18.  Comparison of Human Immunodeficiency Virus Type 1-Specific Inhibitory Activities in Saliva and Other Human Mucosal Fluids▿  
Clinical and Vaccine Immunology  2006;13(10):1111-1118.
Several human mucosal fluids are known to possess an innate ability to inhibit human immunodeficiency virus type 1 (HIV-1) infection and replication in vitro. This study compared the HIV-1 inhibitory activities of several mucosal fluids, whole, submandibular/sublingual (sm/sl), and parotid saliva, breast milk, colostrum, seminal plasma, and cervicovaginal secretions, from HIV-1-seronegative donors by using a 3-day microtiter infection assay. A wide range of HIV-1 inhibitory activity was exhibited in all mucosal fluids tested, with some donors exhibiting high levels of activity while others showed significantly lower levels. Colostrum, whole milk, and whole saliva possessed the highest levels of anti-HIV-1 activity, seminal fluid, cervicovaginal secretions, and sm/sl exhibited moderate levels, and parotid saliva consistently demonstrated the lowest levels of HIV-1 inhibition. Fast protein liquid chromatography gel filtration studies revealed the presence of at least three distinct peaks of inhibitory activity against HIV-1 in saliva and breast milk. Incubation of unfractionated and fractionated whole saliva with antibodies raised against human lactoferrin (hLf), secretory leukocyte protease inhibitor (SLPI), and, to a lesser extent, MG2 (high-molecular-weight mucinous glycoprotein) reduced the HIV-1 inhibitory activity significantly. The results suggest that hLf and SLPI are two key components responsible for HIV-1 inhibitory activity in different mucosal secretions. The variation in HIV inhibitory activity between the fluids and between individuals suggests that there may be major differences in susceptibility to HIV infection depending both on the individual and on the mucosal fluid involved.
doi:10.1128/CDLI.00426-05
PMCID: PMC1595323  PMID: 16928883
19.  Candida albicans Secreted Aspartyl Proteinases in Virulence and Pathogenesis 
Candida albicans is the most common fungal pathogen of humans and has developed an extensive repertoire of putative virulence mechanisms that allows successful colonization and infection of the host under suitable predisposing conditions. Extracellular proteolytic activity plays a central role in Candida pathogenicity and is produced by a family of 10 secreted aspartyl proteinases (Sap proteins). Although the consequences of proteinase secretion during human infections is not precisely known, in vitro, animal, and human studies have implicated the proteinases in C. albicans virulence in one of the following seven ways: (i) correlation between Sap production in vitro and Candida virulence, (ii) degradation of human proteins and structural analysis in determining Sap substrate specificity, (iii) association of Sap production with other virulence processes of C. albicans, (iv) Sap protein production and Sap immune responses in animal and human infections, (v) SAP gene expression during Candida infections, (vi) modulation of C. albicans virulence by aspartyl proteinase inhibitors, and (vii) the use of SAP-disrupted mutants to analyze C. albicans virulence. Sap proteins fulfill a number of specialized functions during the infective process, which include the simple role of digesting molecules for nutrient acquisition, digesting or distorting host cell membranes to facilitate adhesion and tissue invasion, and digesting cells and molecules of the host immune system to avoid or resist antimicrobial attack by the host. We have critically discussed the data relevant to each of these seven criteria, with specific emphasis on how this proteinase family could contribute to Candida virulence and pathogenesis.
doi:10.1128/MMBR.67.3.400-428.2003
PMCID: PMC193873  PMID: 12966142
20.  In Vivo Analysis of Secreted Aspartyl Proteinase Expression in Human Oral Candidiasis 
Infection and Immunity  1999;67(5):2482-2490.
Secreted aspartyl proteinases are putative virulence factors in Candida infections. Candida albicans possesses at least nine members of a SAP gene family, all of which have been sequenced. Although the expression of the SAP genes has been extensively characterized under laboratory growth conditions, no studies have analyzed in detail the in vivo expression of these proteinases in human oral colonization and infection. We have developed a reliable and sensitive procedure to detect C. albicans mRNA from whole saliva of patients with oral C. albicans infection and those with asymptomatic Candida carriage. The reverse transcription-PCR protocol was used to determine which of the SAP1 to SAP7 genes are expressed by C. albicans during colonization and infection of the oral cavity. SAP2 and the SAP4 to SAP6 subfamily were the predominant proteinase genes expressed in the oral cavities of both Candida carriers and patients with oral candidiasis; SAP4, SAP5, or SAP6 mRNA was detected in all subjects. SAP1 and SAP3 transcripts were observed only in patients with oral candidiasis. SAP7 mRNA expression, which has never been demonstrated under laboratory conditions, was detected in several of the patient samples. All seven SAP genes were simultaneously expressed in some patients with oral candidiasis. This is the first detailed study showing that the SAP gene family is expressed by C. albicans during colonization and infection in humans and that C. albicans infection is associated with the differential expression of individual SAP genes which may be involved in the pathogenesis of oral candidiasis.
PMCID: PMC115994  PMID: 10225911
21.  Detection of DOPA-Melanin in the Dimorphic Fungal Pathogen Penicillium marneffei and Its Effect on Macrophage Phagocytosis In Vitro 
PLoS ONE  2014;9(3):e92610.
The fungal pathogen Penicillium marneffei produces melanin-like pigment in vitro. The synthetic pathway of melanin and its possible influence in the protective yeast cells surviving within macrophage cells are not known. In this work, P. marneffei produced brown black pigment in the presence of L-DOPA and black particles were extracted from yeast cells treated with proteolytic enzymes, denaturant and concentrated hot acid. Kojic acid inhibited the brown-black pigment production of P. marneffei yeast grown on brain heart infusion agar. Transmitting electron microscopy showed spherical granular electron-dense particles with an average diameter of 100 nm in a beaded arrangement in the innermost cell wall. Electron-paramagnetic resonance revealed that the black particles contain a stable free radical compound. The UV-visible and Fourier transform infrared spectra of particles extracted from P. marneffei and synthetic DOPA-melanin showed a high degree of similarity. Melanized yeast cells decreased phagocytosis by macrophage cells and increased resistance to intracellular digestion in vitro. These results indicate that P. marneffei can synthesize DOPA-melanin or melanin-like compounds in vitro and suggest that the DOPA-melanin pathway is associated with cell wall structure and enhances the resistance to phagocytosis by macrophages.
doi:10.1371/journal.pone.0092610
PMCID: PMC3960263  PMID: 24647795
22.  Glycosylation of Candida albicans Cell Wall Proteins Is Critical for Induction of Innate Immune Responses and Apoptosis of Epithelial Cells 
PLoS ONE  2012;7(11):e50518.
C. albicans is one of the most common fungal pathogen of humans, causing local and superficial mucosal infections in immunocompromised individuals. Given that the key structure mediating host-C. albicans interactions is the fungal cell wall, we aimed to identify features of the cell wall inducing epithelial responses and be associated with fungal pathogenesis. We demonstrate here the importance of cell wall protein glycosylation in epithelial immune activation with a predominant role for the highly branched N-glycosylation residues. Moreover, these glycan moieties induce growth arrest and apoptosis of epithelial cells. Using an in vitro model of oral candidosis we demonstrate, that apoptosis induction by C. albicans wild-type occurs in early stage of infection and strongly depends on intact cell wall protein glycosylation. These novel findings demonstrate that glycosylation of the C. albicans cell wall proteins appears essential for modulation of epithelial immunity and apoptosis induction, both of which may promote fungal pathogenesis in vivo.
doi:10.1371/journal.pone.0050518
PMCID: PMC3511564  PMID: 23226301
23.  Secreted Aspartic Protease Cleavage of Candida albicans Msb2 Activates Cek1 MAPK Signaling Affecting Biofilm Formation and Oropharyngeal Candidiasis 
PLoS ONE  2012;7(11):e46020.
Perception of external stimuli and generation of an appropriate response are crucial for host colonization by pathogens. In pathogenic fungi, mitogen activated protein kinase (MAPK) pathways regulate dimorphism, biofilm/mat formation, and virulence. Signaling mucins, characterized by a heavily glycosylated extracellular domain, a transmembrane domain, and a small cytoplasmic domain, are known to regulate various signaling pathways. In Candida albicans, the mucin Msb2 regulates the Cek1 MAPK pathway. We show here that Msb2 is localized to the yeast cell wall and is further enriched on hyphal surfaces. A msb2Δ/Δ strain formed normal hyphae but had biofilm defects. Cek1 (but not Mkc1) phosphorylation was absent in the msb2Δ/Δ mutant. The extracellular domain of Msb2 was shed in cells exposed to elevated temperature and carbon source limitation, concomitant with germination and Cek1 phosphorylation. Msb2 shedding occurred differentially in cells grown planktonically or on solid surfaces in the presence of cell wall and osmotic stressors. We further show that Msb2 shedding and Cek1 phosphorylation were inhibited by addition of Pepstatin A (PA), a selective inhibitor of aspartic proteases (Saps). Analysis of combinations of Sap protease mutants identified a sap8Δ/Δ mutant with reduced MAPK signaling along with defects in biofilm formation, thereby suggesting that Sap8 potentially serves as a major regulator of Msb2 processing. We further show that loss of either Msb2 (msb2Δ/Δ) or Sap8 (sap8Δ/Δ) resulted in higher C. albicans surface β-glucan exposure and msb2Δ/Δ showed attenuated virulence in a murine model of oral candidiasis. Thus, Sap-mediated proteolytic cleavage of Msb2 is required for activation of the Cek1 MAPK pathway in response to environmental cues including those that induce germination. Inhibition of Msb2 processing at the level of Saps may provide a means of attenuating MAPK signaling and reducing C. albicans virulence.
doi:10.1371/journal.pone.0046020
PMCID: PMC3491010  PMID: 23139737
24.  The Acute Neutrophil Response Mediated by S100 Alarmins during Vaginal Candida Infections Is Independent of the Th17-Pathway 
PLoS ONE  2012;7(9):e46311.
Vulvovaginal candidiasis (VVC) caused by Candida albicans affects a significant number of women during their reproductive ages. Clinical observations revealed that a robust vaginal polymorphonuclear neutrophil (PMN) migration occurs in susceptible women, promoting pathological inflammation without affecting fungal burden. Evidence to date in the mouse model suggests that a similar acute PMN migration into the vagina is mediated by chemotactic S100A8 and S100A9 alarmins produced by vaginal epithelial cells in response to Candida. Based on the putative role for the Th17 response in mucosal candidiasis as well as S100 alarmin induction, this study aimed to determine whether the Th17 pathway plays a role in the S100 alarmin-mediated acute inflammation during VVC using the experimental mouse model. For this, IL-23p19−/−, IL-17RA−/− and IL-22−/− mice were intravaginally inoculated with Candida, and vaginal lavage fluids were evaluated for fungal burden, PMN infiltration, the presence of S100 alarmins and inflammatory cytokines and chemokines. Compared to wild-type mice, the cytokine-deficient mice showed comparative levels of vaginal fungal burden and PMN infiltration following inoculation. Likewise, inoculated mice of all strains with substantial PMN infiltration exhibited elevated levels of vaginal S100 alarmins in both vaginal epithelia and secretions in the vaginal lumen. Finally, cytokine analyses of vaginal lavage fluid from inoculated mice revealed equivalent expression profiles irrespective of the Th17 cytokine status or PMN response. These data suggest that the vaginal S100 alarmin response to Candida does not require the cells or cytokines of the Th17 lineage, and therefore, the immunopathogenic inflammatory response during VVC occurs independently of the Th17-pathway.
doi:10.1371/journal.pone.0046311
PMCID: PMC3457984  PMID: 23050010
25.  Candida albicans Yeast and Hyphae are Discriminated by MAPK Signaling in Vaginal Epithelial Cells 
PLoS ONE  2011;6(11):e26580.
We previously reported that a bi-phasic innate immune MAPK response, constituting activation of the mitogen-activated protein kinase (MAPK) phosphatase MKP1 and c-Fos transcription factor, discriminates between the yeast and hyphal forms of Candida albicans in oral epithelial cells (ECs). Since the vast majority of mucosal Candida infections are vaginal, we sought to determine whether a similar bi-phasic MAPK-based immune response was activated by C. albicans in vaginal ECs. Here, we demonstrate that vaginal ECs orchestrate an innate response to C. albicans via NF-κB and MAPK signaling pathways. However, unlike in oral ECs, the first MAPK response, defined by c-Jun transcription factor activation, is delayed until 2 h in vaginal ECs but is still independent of hypha formation. The ‘second’ or ‘late’ MAPK response, constituting MKP1 and c-Fos transcription factor activation, is identical to oral ECs and is dependent upon both hypha formation and fungal burdens. NF-κB activation is immediate but independent of morphology. Furthermore, the proinflammatory response in vaginal ECs is different to oral ECs, with an absence of G-CSF and CCL20 and low level IL-6 production. Therefore, differences exist in how C. albicans activates signaling mechanisms in oral and vaginal ECs; however, the activation of MAPK-based pathways that discriminate between yeast and hyphal forms is retained between these mucosal sites. We conclude that this MAPK-based signaling pathway is a common mechanism enabling different human epithelial tissues to orchestrate innate immune responses specifically against C. albicans hyphae.
doi:10.1371/journal.pone.0026580
PMCID: PMC3210759  PMID: 22087232

Results 1-25 (25)