Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Global screening of potential Candida albicans biofilm-related transcription factors via network comparison 
BMC Bioinformatics  2010;11:53.
Candida albicans is a commonly encountered fungal pathogen in humans. The formation of biofilm is a major virulence factor in C. albicans pathogenesis and is related to antidrug resistance of this organism. Although many factors affecting biofilm have been analyzed, molecular mechanisms that regulate biofilm formation still await to be elucidated.
In this study, from the gene regulatory network perspective, we developed an efficient computational framework, which integrates different kinds of data from genome-scale analysis, for global screening of potential transcription factors (TFs) controlling C. albicans biofilm formation. S. cerevisiae information and ortholog data were used to infer the possible TF-gene regulatory associations in C. albicans. Based on TF-gene regulatory associations and gene expression profiles, a stochastic dynamic model was employed to reconstruct the gene regulatory networks of C. albicans biofilm and planktonic cells. The two networks were then compared and a score of relevance value (RV) was proposed to determine and assign the quantity of correlation of each potential TF with biofilm formation. A total of twenty-three TFs are identified to be related to the biofilm formation; ten of them are previously reported by literature evidences.
The results indicate that the proposed screening method can successfully identify most known biofilm-related TFs and also identify many others that have not been previously reported. Together, this method can be employed as a pre-experiment screening approach that reveals new target genes for further characterization to understand the regulatory mechanisms in biofilm formation, which can serve as the starting point for therapeutic intervention of C. albicans infections.
PMCID: PMC2842261  PMID: 20102611
S100A8 and S100A9 and their heterocomplex calprotectin (S100A8/A9) are abundant cytosolic constituents in human neutrophils previously shown to possess antifungal activity. This study was designed to investigate mechanisms involved in the modulation of the antifungal properties of S100A8/A9. S100A8, S100A9 and site-directed mutants of both proteins were tested for their antifungal effect against Candida albicans in microplate dilution assays. Whereas S100A8 alone did not inhibit fungal growth, S100A9 by itself had a moderate antifungal effect. Combining both proteins had the strongest effect. Supporting a potential role for oxidation in S100A8/A9, substitution of methionine 63 or 83 of S100A9 resulted in the loss of antifungal activity. Additionally, the substitution to alanine of cysteine 42 of S100A8 also caused a loss of S100A8’s ability to enhance S100A9’s antifungal effect. Overall, our data indicates that both S100A8 and S100A9 are required for their fully active antifungal effect and that oxidation regulates S100A8/A9 antifungal activity through mechanisms that remain to be elucidated and evaluated. Finally, together with our previous work describing the oxidation sensitive anti-inflammatory effects of S100A8/A9, we propose that S100A8/A9 exerts an anti-inflammatory activity in healthy state and that conditions associated with oxidative stress activate the antifungal activity of S100A8/A9.
PMCID: PMC2730662  PMID: 19087201
Candida albicans; antifungal; calprotectin; S100A8; S100A9; oxidation; innate immunity
3.  Inactivation of the phospholipase B gene PLB5 in wild-type Candida albicans reduces cell-associated phospholipase A2 activity and attenuates virulence 
Phospholipases are critical for modification and redistribution of lipid substrates, membrane remodeling and microbial virulence. Among the many different classes of phospholipases, fungal phospholipase B (Plb) proteins show the broadest range of substrate specificity and hydrolytic activity, hydrolyzing acyl ester bonds in phospholipids and lysophospholipids and further catalyzing lysophospholipase-transacylase reactions. The genome of the opportunistic fungal pathogen Candida albicans encodes a PLB multigene family with five putative members; we present the first characterization of this group of potential virulence determinants. CaPLB5, the third member of this multigene family characterized herein is a putative secretory protein with a predicted GPI-anchor attachment site. Real-time RT-PCR gene expression analysis of CaPLB5 and the additional CaPLB gene family members revealed that filamentous growth and physiologically relevant environmental conditions are associated with increased phospholipase B gene activity. The phenotypes expressed by null mutant and revertant strains of CaPLB5 indicate that this lipid hydrolase plays an important role for cell-associated phospholipase A2 activity and in vivo organ colonization.
PMCID: PMC2481510  PMID: 16759910
GPI anchor; Phospholipase; Lysophospholipase; Candida; Selection marker; Virulence
4.  Candida albicans Modulates Host Defense by Biosynthesizing the Pro-Resolving Mediator Resolvin E1 
PLoS ONE  2007;2(12):e1316.
Candida albicans is an opportunistic fungal pathogen of humans that resides commensally on epithelial surfaces, but can cause inflammation when pathogenic. Resolvins are a class of anti-inflammatory lipids derived from omega-3 polyunsaturated fatty acids (PUFA) that attenuate neutrophil migration during the resolution phase of inflammation. In this report we demonstrate that C. albicans biosynthesizes resolvins that are chemically identical to those produced by human cells. In contrast to the trans-cellular biosynthesis of human Resolvin E1 (RvE1), RvE1 biosynthesis in C. albicans occurs in the absence of other cellular partners. C. albicans biosynthesis of RvE1 is sensitive to lipoxygenase and cytochrome P450 monoxygenase inhibitors. We show that 10nM RvE1 reduces neutrophil chemotaxis in response to IL-8; 1nM RvE1 enhanced phagocytosis of Candida by human neutrophils, as well as intracellular ROS generation and killing, while having no direct affect on neutrophil motility. In a mouse model of systemic candidiasis, RvE1 stimulated clearance of the fungus from circulating blood. These results reveal an inter-species chemical signaling system that modulates host immune functions and may play a role in balancing host carriage of commensal and pathogenic C. albicans.
PMCID: PMC2134765  PMID: 18091990
5.  Phospholipase A2 and Phospholipase B Activities in Fungi 
Biochimica et biophysica acta  2006;1761(11):1391-1399.
As saprophytes or disease causing microorganisms, fungi acquire nutrients from dead organic material or living host organisms. Lipids as structural components of cell membranes and storage compartments play an important role as energy-rich food source. In recent years, it also has become clear that lipids have a wide range of bioactive properties including signal transduction and cell to cell communication. Thus, it is not surprising that fungi possess a broad range of hydrolytic enzymes that attack neutral lipids and phospholipids. Especially during infection of a mammalian host, phospholipase A2 (PLA2) enzymes released by fungi could play important roles not only for nutrient acquisition and tissue invasion, but for intricate modulation of the host’s immune response. Sequencing of fungal genomes has revealed a wide range of genes encoding PLA2 activities in fungi. We are just beginning to become aware of the significance these enzymes could have for the fungal cells and their interaction with the host.
PMCID: PMC2077850  PMID: 17081801
6.  Role of Calcineurin in Stress Resistance, Morphogenesis, and Virulence of a Candida albicans Wild-Type Strain  
Infection and Immunity  2006;74(7):4366-4369.
By generating a calcineurin mutant of the Candida albicans wild-type strain SC5314 with the help of a new recyclable dominant selection marker, we confirmed that calcineurin mediates tolerance to a variety of stress conditions but is not required for the ability of C. albicans to switch to filamentous growth in response to hypha-inducing environmental signals. While calcineurin was essential for virulence of C. albicans in a mouse model of disseminated candidiasis, deletion of CMP1 did not significantly affect virulence during vaginal or pulmonary infection, demonstrating that the requirement for calcineurin for a successful infection depends on the host niche.
PMCID: PMC1489686  PMID: 16790813
7.  Genome-Wide Transcription Profiling of the Early Phase of Biofilm Formation by Candida albicans†  
Eukaryotic Cell  2005;4(9):1562-1573.
The ability to adhere to surfaces and develop as a multicellular community is an adaptation used by most microorganisms to survive in changing environments. Biofilm formation proceeds through distinct developmental phases and impacts not only medicine but also industry and evolution. In organisms such as the opportunistic pathogen Candida albicans, the ability to grow as biofilms is also an important mechanism for persistence, facilitating its growth on different tissues and a broad range of abiotic surfaces used in medical devices. The early stage of C. albicans biofilm is characterized by the adhesion of single cells to the substratum, followed by the formation of an intricate network of hyphae and the beginning of a dense structure. Changes in the transcriptome begin within 30 min of contact with the substrate and include expression of genes related to sulfur metabolism, in particular MET3, and the equivalent gene homologues of the Ribi regulon in Saccharomyces cerevisiae. Some of these changes are initiated early and maintained throughout the process; others are restricted to the earliest stages of biofilm formation. We identify here a potential alternative pathway for cysteine metabolism and the biofilm-associated expression of genes involved in glutathione production in C. albicans.
PMCID: PMC1214198  PMID: 16151249
8.  A Human-Curated Annotation of the Candida albicans Genome 
PLoS Genetics  2005;1(1):e1.
Recent sequencing and assembly of the genome for the fungal pathogen Candida albicans used simple automated procedures for the identification of putative genes. We have reviewed the entire assembly, both by hand and with additional bioinformatic resources, to accurately map and describe 6,354 genes and to identify 246 genes whose original database entries contained sequencing errors (or possibly mutations) that affect their reading frame. Comparison with other fungal genomes permitted the identification of numerous fungus-specific genes that might be targeted for antifungal therapy. We also observed that, compared to other fungi, the protein-coding sequences in the C. albicans genome are especially rich in short sequence repeats. Finally, our improved annotation permitted a detailed analysis of several multigene families, and comparative genomic studies showed that C. albicans has a far greater catabolic range, encoding respiratory Complex 1, several novel oxidoreductases and ketone body degrading enzymes, malonyl-CoA and enoyl-CoA carriers, several novel amino acid degrading enzymes, a variety of secreted catabolic lipases and proteases, and numerous transporters to assimilate the resulting nutrients. The results of these efforts will ensure that the Candida research community has uniform and comprehensive genomic information for medical research as well as for future diagnostic and therapeutic applications.
Candida albicans is a commonly encountered fungal pathogen usually responsible for superficial infections (thrush and vaginitis). However, an estimated 30% of severe fungal infections, most due to Candida, result in death. Those who are most at risk include individuals taking immune-suppressive drugs following organ transplantation, people with HIV infection, premature infants, and cancer patients undergoing chemotherapy. Current therapies for this pathogen are made more difficult by the significant secondary effects of anti-fungal drugs that target proteins that are also found in the human host.
Recent sequencing and assembly of the genome for the fungal pathogen C. albicans used simple automated procedures for the identification of putative genes. Here, we report a detailed annotation of the 6,354 genes that are present in the genome sequence of this organism, essentially writing the dictionary of the C. albicans genome.
Comparison with other fungal genomes permitted the identification of numerous fungus-specific genes that are absent from the human genome and whose products might be targeted for antifungal therapy. The results of these efforts will thus ensure that the Candida research community has uniform and comprehensive genomic information for medical research, for the development of functional genomic tools as well as for future diagnostic and therapeutic applications.
PMCID: PMC1183520  PMID: 16103911
9.  In Vivo Analysis of Secreted Aspartyl Proteinase Expression in Human Oral Candidiasis 
Infection and Immunity  1999;67(5):2482-2490.
Secreted aspartyl proteinases are putative virulence factors in Candida infections. Candida albicans possesses at least nine members of a SAP gene family, all of which have been sequenced. Although the expression of the SAP genes has been extensively characterized under laboratory growth conditions, no studies have analyzed in detail the in vivo expression of these proteinases in human oral colonization and infection. We have developed a reliable and sensitive procedure to detect C. albicans mRNA from whole saliva of patients with oral C. albicans infection and those with asymptomatic Candida carriage. The reverse transcription-PCR protocol was used to determine which of the SAP1 to SAP7 genes are expressed by C. albicans during colonization and infection of the oral cavity. SAP2 and the SAP4 to SAP6 subfamily were the predominant proteinase genes expressed in the oral cavities of both Candida carriers and patients with oral candidiasis; SAP4, SAP5, or SAP6 mRNA was detected in all subjects. SAP1 and SAP3 transcripts were observed only in patients with oral candidiasis. SAP7 mRNA expression, which has never been demonstrated under laboratory conditions, was detected in several of the patient samples. All seven SAP genes were simultaneously expressed in some patients with oral candidiasis. This is the first detailed study showing that the SAP gene family is expressed by C. albicans during colonization and infection in humans and that C. albicans infection is associated with the differential expression of individual SAP genes which may be involved in the pathogenesis of oral candidiasis.
PMCID: PMC115994  PMID: 10225911
10.  Three Small Nucleolar RNAs Identified from the Spliced Leader-Associated RNA Locus in Kinetoplastid Protozoans 
Molecular and Cellular Biology  1998;18(8):4409-4417.
First characterized in Trypanosoma brucei, the spliced leader-associated (SLA) RNA gene locus has now been isolated from the kinetoplastids Leishmania tarentolae and Trypanosoma cruzi. In addition to the T. brucei SLA RNA, both L. tarentolae and T. cruzi SLA RNA repeat units also yield RNAs of 75 or 76 nucleotides (nt), 92 or 94 nt, and ∼450 or ∼350 nt, respectively, each with significant sequence identity to transcripts previously described from the T. brucei SLA RNA locus. Cell fractionation studies localize the three additional RNAs to the nucleolus; the presence of box C/D-like elements in two of the transcripts suggests that they are members of a class of small nucleolar RNAs (snoRNAs) that guide modification and cleavage of rRNAs. Candidate rRNA-snoRNA interactions can be found for one domain in each of the C/D element-containing RNAs. The putative target site for the 75/76-nt RNA is a highly conserved portion of the small subunit rRNA that contains 2′-O-ribose methylation at a conserved position (Gm1830) in L. tarentolae and in vertebrates. The 92/94-nt RNA has the potential to form base pairs near a conserved methylation site in the large subunit rRNA, which corresponds to position Gm4141 of small rRNA 2 in T. brucei. These data suggest that trypanosomatids do not obey the general 5-bp rule for snoRNA-mediated methylation.
PMCID: PMC109026  PMID: 9671450
11.  Single-Step Multiplex PCR Assay for Characterization of New World Leishmania Complexes 
Journal of Clinical Microbiology  1998;36(7):1989-1995.
We have developed a PCR assay for one-step differentiation of the three complexes of New World Leishmania (Leishmania braziliensis, Leishmania mexicana, and Leishmania donovani). This multiplex assay is targeted to the spliced leader RNA (mini-exon) gene repeats of these organisms and can detect all three complexes simultaneously, generating differently sized products for each complex. The assay is specific to the Leishmania genus and does not recognize related kinetoplastid protozoa, such as Trypanosoma cruzi, Trypanosoma brucei, and Crithidia fasciculata. It correctly identified Leishmania species with a broad geographic distribution in Central and South America. The sensitivity of the PCR amplification ranged from 1 fg to 10 pg of DNA (0.01 to 100 parasites), depending on the complex detected. Crude extracts of cultured parasites, prepared simply by boiling diluted cultures, served as excellent templates for amplification. Crude preparations of clinical material were also tested. The assay detected L. braziliensis in dermal scrapings from cutaneous leishmanial lesions, Leishmania chagasi in dermal scrapings of atypical cutaneous leishmaniasis, and L. mexicana from lesion aspirates from infected hamsters. We have minimized the material requirements and maximized the simplicity, rapidity, and informative content of this assay to render it suitable for use in laboratories in countries where leishmaniasis is endemic. This assay should be useful for rapid in-country identification of Leishmania parasites, particularly where different Leishmania complexes are found in the same geographical area.
PMCID: PMC104966  PMID: 9650950
12.  A Comparative Structural Analysis of the Flagellin Monomers of Caulobacter crescentus Indicates that These Proteins Are Encoded by Two Genes 
Journal of Bacteriology  1982;150(2):925-933.
The flagellum of Caulobacter crescentus is composed of two flagellin polypeptide monomers which are distinguished by molecular weight and are closely related by biochemical and immunological criteria (C. Lagenaur and N. Agabian, J. Bacteriol. 132:731-733, 1977). The synthesis and assembly of these two flagellin proteins are developmentally regulated, and the periodicity of expression for each is distinct (C. Lagenaur and N. Agabian, J. Bacteriol. 135:1062-1069, 1978; M. A. Osley, M. Sheffery, and A. Newton, Cell 12:393-400, 1977). To understand the genetic and functional relationship between the 25,000- and 27,500-molecular-weight flagellins of C. crescentus CB15, a detailed comparative analysis of their protein structure was made, using a number of techniques, including one- and two-dimensional peptide mapping, a novel procedure of peptide alignment, and amino terminal amino acid sequence analysis. The tryptic peptides generated by each of the flagellins were compared by two-dimensional thin-layer chromatography. This peptide map analysis indicated that approximately 36% of the peptides generated from these two proteins had similar migration properties. Together with biochemical and immunological criteria, the two-dimensional peptide map suggested some structural relatedness between the monomers. However, a comparison of peptide fragments generated during partial protease digestion of each protein by a method of one-dimensional mapping indicated that the two proteins are structurally unique. A peptide alignment technique was developed to directly compare the primary structure of these proteins. In the peptide alignment procedure the amino terminus of each protein is radioactively labeled. After partial enzymatic digestion, the peptides are fractionated by polyacrylamide gel electrophoresis: those labeled at the amino terminus are then resolved by subsequent autoradiography. Each digest contains a family of amino-terminal-labeled fragments, the sizes of which reflect the sequential alignment of cleavage sites in the protein. A comparison of the alignment of specific cleavage sites of the two flagellins by this technique further established that each flagellin is structurally unique, particularly in the carboxyl terminal region. Finally, comparison of the amino terminal amino acid sequences indicated that the amino terminal region of both flagellins is highly conserved, but that the two polypeptides are clearly not identical. These findings strongly indicate that the two flagellins are encoded by distinct genetic loci and are not the product of novel processing of a single larger precursor.
PMCID: PMC216446  PMID: 7068537
13.  Effect of Carbon Source and the Role of Cyclic Adenosine 3′,5′-Monophosphate on the Caulobacter Cell Cycle 
Journal of Bacteriology  1977;131(3):951-959.
The expression of cell cycle events in Caulobacter crescentus CB13 has been shown to be associated with regulation of carbohydrate utilization. Growth on lactose and galactose depends on induction of specific enzymes. Prior growth on glucose results in a delay in enzyme expression and cell cycle arrest at the nonmotile, predivisional stage. Dibutyryl cyclic adenosine 3′,5′-monophosphate (AMP) was shown to stimulate expression of the inducible enzymes and, thus, the initiation of the cell cycle. β-Galactosidase-constitutive mutants did not exhibit a cell cycle arrest upon transfer of cultures from glucose to lactose. Furthermore, carbon source starvation results in accumulation of the cells at the predivisional stage. The cell cycle arrest therefore results from nutritional deprivation and is analogous to the general control system exhibited by yeast (Hartwell, Bacteriol. Rev. 38:164-198, 1974; Wolfner et al., J. Mol. Biol. 96:273-290, 1975), which coordinates cell cycle initiation with metabolic state. Transfer of C. crescentus CB13 from glucose to mannose did not result in a cell cycle arrest, and it was demonstrated that this carbon source is metabolized by constitutive enzymes. Growth on mannose, however, is stimulated by exogenous dibutyryl cyclic AMP without a concomitant increase in the specific activity of the mannose catabolic enzymes. The effect of cyclic AMP on growth on sugars metabolized by inducible enzymes, as well as on sugars metabolized by constitutive enzymes, may represent a regulatory system common to both types of sugar utilization, since they share features that differ from glucose utilization, namely, temperature-sensitive growth and low intracellular concentrations of cyclic guanosine 3′,5′-monophosphate.
PMCID: PMC235553  PMID: 197060

Results 1-13 (13)