Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Hepatitis B Virus Surface Antigen Activates Myeloid Dendritic Cells via a Soluble CD14-Dependent Mechanism 
Journal of Virology  2016;90(14):6187-6199.
Hepatitis B virus (HBV) infection can cause chronic liver disease, which is associated with increased risk of liver cirrhosis, liver failure, and liver cancer. Clearance of HBV infection requires effective HBV-specific immunity; however, the immunological mechanisms that determine the development of effective HBV-specific immunity are poorly understood. Dendritic cells (DC) play a pivotal role in the regulation of antiviral immunity. Here, we investigated the interaction between HBV surface antigen (HBsAg), the main envelope glycoprotein of HBV, and BDCA1+ myeloid dendritic cells (mDC). Exposure of peripheral blood-derived BDCA1+ mDC to HBsAg resulted in strong DC maturation, cytokine production, and enhanced capacity to activate antigen-specific cytotoxic T cells (CTLs). By using neutralizing antibodies, crucial roles for CD14 and Toll-like receptor 4 (TLR4) in HBsAg-mediated BDCA1+ mDC maturation were identified. Concordantly, HBsAg-mediated DC maturation required fetal calf serum (FCS) or human plasma, naturally containing soluble CD14 (sCD14). Intriguingly, HBsAg-induced DC maturation was significantly reduced in umbilical cord blood plasma, which contained less sCD14 than adult plasma, indicating that sCD14 is an important host factor for recognition of HBsAg by DC and subsequent DC activation. A direct interaction between sCD14 and HBsAg was demonstrated by using enzyme-linked immunosorbent assay (ELISA). Moreover, sCD14-HBsAg complexes were detected both in vitro and in sera of HBV-infected patients. The abundance of sCD14-HBsAg complexes varied between chronic HBV disease stages and correlated with activation of BDCA1+ mDC in vivo. We conclude that HBsAg activates BDCA1+ DC via an sCD14-dependent mechanism. These findings provide important novel insights into the initiation of HBV-specific immunity and facilitate development of effective immunotherapeutic interventions for HBV.
IMPORTANCE Hepatitis B virus (HBV) infection is a significant health problem, as it causes progressive liver injury and liver cancer in patients with chronic HBV infection, which affects approximately 250 million individuals worldwide. Some of the infected adults and the majority of neonates fail to mount an effective immune response and consequently develop chronic infection. The viral and host factors involved in the initiation of effective HBV-specific immune responses remain poorly understood. Here we identified CD14 and TLR4 as receptors for HBsAg, the main HBV envelope antigen. HBsAg induced strong maturation of dendritic cells (DC), which have a central role in regulation of virus-specific immunity. These results provide essential novel insights into the mechanisms underlying the initiation of HBV-specific immunity. Intriguingly, since neonates have naturally low sCD14, the finding that serum-derived sCD14 is a crucial host factor for recognition of HBsAg by DC may have implications for immunity of neonates to HBV infection.
PMCID: PMC4936135  PMID: 27099316
2.  Cellular Oxidative Stress Response Controls the Antiviral and Apoptotic Programs in Dengue Virus-Infected Dendritic Cells 
PLoS Pathogens  2014;10(12):e1004566.
Dengue virus (DENV) is a re-emerging arthropod borne flavivirus that infects more than 300 million people worldwide, leading to 50,000 deaths annually. Because dendritic cells (DC) in the skin and blood are the first target cells for DENV, we sought to investigate the early molecular events involved in the host response to the virus in primary human monocyte-derived dendritic cells (Mo-DC). Using a genome-wide transcriptome analysis of DENV2-infected human Mo-DC, three major responses were identified within hours of infection - the activation of IRF3/7/STAT1 and NF-κB-driven antiviral and inflammatory networks, as well as the stimulation of an oxidative stress response that included the stimulation of an Nrf2-dependent antioxidant gene transcriptional program. DENV2 infection resulted in the intracellular accumulation of reactive oxygen species (ROS) that was dependent on NADPH-oxidase (NOX). A decrease in ROS levels through chemical or genetic inhibition of the NOX-complex dampened the innate immune responses to DENV infection and facilitated DENV replication; ROS were also essential in driving mitochondrial apoptosis in infected Mo-DC. In addition to stimulating innate immune responses to DENV, increased ROS led to the activation of bystander Mo-DC which up-regulated maturation/activation markers and were less susceptible to viral replication. We have identified a critical role for the transcription factor Nrf2 in limiting both antiviral and cell death responses to the virus by feedback modulation of oxidative stress. Silencing of Nrf2 by RNA interference increased DENV-associated immune and apoptotic responses. Taken together, these data demonstrate that the level of oxidative stress is critical to the control of both antiviral and apoptotic programs in DENV-infected human Mo-DC and highlight the importance of redox homeostasis in the outcome of DENV infection.
Author Summary
Dengue virus (DENV), the leading arthropod-borne viral infection in the world, represents a major human health concern with a global at risk population of over 3 billion people. Currently, there are no antivirals or vaccines available to treat patients with dengue fever, nor is it possible to predict which patients will progress to life-threatening severe dengue fever. Markers associated with oxidative stress responses have been reported in patients with severe DENV infection, suggesting a relationship between oxidative stress and viral pathogenesis. In order to uncover biological processes that determine the outcome of disease in patients, we utilized human dendritic cells, the primary target of DENV infection, in an in vitro model. Transcriptional analysis of pathways activated upon de novo DENV infection revealed a major role for cellular oxidative stress in the induction of antiviral, inflammatory, and cell death responses. We also demonstrated that antioxidant mechanisms play a critical role in controlling antiviral and cell death responses to the virus, acting as feedback regulators of the oxidative stress response. This report highlights the importance of oxidative stress responses in the outcome of DENV infection, and identifies this pathway as a potential new entry-point for treating dengue-associated diseases.
PMCID: PMC4270780  PMID: 25521078
3.  Understanding MHC Class I Presentation of Viral Antigens by Human Dendritic Cells as a Basis for Rational Design of Therapeutic Vaccines 
Effective viral clearance requires the induction of virus-specific CD8+ cytotoxic T lymphocytes (CTL). Since dendritic cells (DC) have a central role in initiating and shaping virus-specific CTL responses, it is important to understand how DC initiate virus-specific CTL responses. Some viruses can directly infect DC, which theoretically allow direct presentation of viral antigens to CTL, but many viruses target other cells than DC and thus the host depends on the cross-presentation of viral antigens by DC to activate virus-specific CTL.
Research in mouse models has highly enhanced our understanding of the mechanisms underlying cross-presentation and the dendritic cells (DC) subsets involved, however, these results cannot be readily translated toward the role of human DC in MHC class I-antigen presentation of human viruses. Here, we summarize the insights gained in the past 20 years on MHC class I presentation of viral antigen by human DC and add to the current debate on the capacities of different human DC subsets herein. Furthermore, possible sources of viral antigens and essential DC characteristics for effective induction of virus-specific CTL are evaluated.
We conclude that cross-presentation is not only an efficient mechanism exploited by DC to initiate immunity to viruses that do not infect DC but also to viruses that do infect DC, because cross-presentation has many conceptual advantages and bypasses direct immune modulatory effects of the virus on its infected target cells.
Since knowledge on the mechanism of viral antigen presentation and the preferred DC subsets is crucial for rational vaccine design, the obtained insights are very instrumental for the development of effective anti-viral immunotherapy.
PMCID: PMC4005948  PMID: 24795724
virus; human dendritic cell; cross-presentation; CTL priming; MHC class I-antigen presentation; viral immunity; immunotherapy; virus–host interaction
4.  DC-ATLAS: a systems biology resource to dissect receptor specific signal transduction in dendritic cells 
Immunome Research  2010;6:10.
The advent of Systems Biology has been accompanied by the blooming of pathway databases. Currently pathways are defined generically with respect to the organ or cell type where a reaction takes place. The cell type specificity of the reactions is the foundation of immunological research, and capturing this specificity is of paramount importance when using pathway-based analyses to decipher complex immunological datasets. Here, we present DC-ATLAS, a novel and versatile resource for the interpretation of high-throughput data generated perturbing the signaling network of dendritic cells (DCs).
Pathways are annotated using a novel data model, the Biological Connection Markup Language (BCML), a SBGN-compliant data format developed to store the large amount of information collected. The application of DC-ATLAS to pathway-based analysis of the transcriptional program of DCs stimulated with agonists of the toll-like receptor family allows an integrated description of the flow of information from the cellular sensors to the functional outcome, capturing the temporal series of activation events by grouping sets of reactions that occur at different time points in well-defined functional modules.
The initiative significantly improves our understanding of DC biology and regulatory networks. Developing a systems biology approach for immune system holds the promise of translating knowledge on the immune system into more successful immunotherapy strategies.
PMCID: PMC3000836  PMID: 21092113

Results 1-4 (4)