PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-19 (19)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Evaluation of the Performances of Ribosomal Database Project (RDP) Classifier for Taxonomic Assignment of 16S rRNA Metabarcoding Sequences Generated from Illumina-Solexa NGS 
Journal of Genomics  2015;3:36-39.
Here we report a benchmark of the effect of bootstrap cut-off values of the RDP Classifier tool in terms of data retention along the different taxonomic ranks by using Illumina reads. Results provide guidelines for planning sequencing depths and selection of bootstrap cut-off in taxonomic assignments.
doi:10.7150/jgen.9204
PMCID: PMC4316179  PMID: 25653722
16S rRNA; metabarcoding; ribosomal database project; OTU clustering; bacterial communities.
2.  The DivJ, CbrA and PleC system controls DivK phosphorylation and symbiosis in Sinorhizobium meliloti 
Molecular microbiology  2013;90(1):54-71.
SUMMARY
Sinorhizobium meliloti is a soil bacterium that invades the root nodules it induces on Medicago sativa, whereupon it undergoes an alteration of its cell cycle and differentiates into nitrogen-fixing, elongated and polyploid bacteroid with higher membrane permeability. In Caulobacter crescentus, a related alphaproteobacterium, the principal cell cycle regulator, CtrA, is inhibited by the phosphorylated response regulator DivK. The phosphorylation of DivK depends on the histidine kinase DivJ, while PleC is the principal phosphatase for DivK. Despite the importance of the DivJ in C. crescentus, the mechanistic role of this kinase has never been elucidated in other Alphaproteobacteria.
We show here that the histidine kinases DivJ together with CbrA and PleC participate in a complex phosphorylation system of the essential response regulator DivK in S. meliloti. In particular, DivJ and CbrA are involved in DivK phosphorylation and in turn CtrA inactivation, thereby controlling correct cell cycle progression and the integrity of the cell envelope. In contrast, the essential PleC presumably acts as a phosphatase of DivK. Interestingly, we found that a DivJ mutant is able to elicit nodules and enter plant cells, but fails to establish an effective symbiosis suggesting that proper envelope and/or low CtrA levels are required for symbiosis.
doi:10.1111/mmi.12347
PMCID: PMC3793127  PMID: 23909720
3.  Soil Bacterial Community Response to Differences in Agricultural Management along with Seasonal Changes in a Mediterranean Region 
PLoS ONE  2014;9(8):e105515.
Land-use change is considered likely to be one of main drivers of biodiversity changes in grassland ecosystems. To gain insight into the impact of land use on the underlying soil bacterial communities, we aimed at determining the effects of agricultural management, along with seasonal variations, on soil bacterial community in a Mediterranean ecosystem where different land-use and plant cover types led to the creation of a soil and vegetation gradient. A set of soils subjected to different anthropogenic impact in a typical Mediterranean landscape, dominated by Quercus suber L., was examined in spring and autumn: a natural cork-oak forest, a pasture, a managed meadow, and two vineyards (ploughed and grass covered). Land uses affected the chemical and structural composition of the most stabilised fractions of soil organic matter and reduced soil C stocks and labile organic matter at both sampling season. A significant effect of land uses on bacterial community structure as well as an interaction effect between land uses and season was revealed by the EP index. Cluster analysis of culture-dependent DGGE patterns showed a different seasonal distribution of soil bacterial populations with subgroups associated to different land uses, in agreement with culture-independent T-RFLP results. Soils subjected to low human inputs (cork-oak forest and pasture) showed a more stable bacterial community than those with high human input (vineyards and managed meadow). Phylogenetic analysis revealed the predominance of Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes phyla with differences in class composition across the site, suggesting that the microbial composition changes in response to land uses. Taken altogether, our data suggest that soil bacterial communities were seasonally distinct and exhibited compositional shifts that tracked with changes in land use and soil management. These findings may contribute to future searches for bacterial bio-indicators of soil health and sustainable productivity.
doi:10.1371/journal.pone.0105515
PMCID: PMC4140800  PMID: 25144665
4.  Linking Bacterial Endophytic Communities to Essential Oils: Clues from Lavandula angustifolia Mill 
Endophytic bacteria play a crucial role in plant life and are also drawing much attention for their capacity to produce bioactive compounds of relevant biotechnological interest. Here we present the characterisation of the cultivable endophytic bacteria of Lavandula angustifolia Mill.—a species used since antiquity for its therapeutic properties—since the production of bioactive metabolites from medical plants may reside also in the activity of bacterial endophytes through their direct production, PGPR activity on host, and/or elicitation of plant metabolism. Lavender tissues are inhabited by a tissue specific endophytic community dominated by Proteobacteria, highlighting also their difference from the rhizosphere environment where Actinobacteria and Firmicutes are also found. Leaves' endophytic community resulted as the most diverse from the other ecological niches. Overall, the findings reported here suggest: (i) the existence of different entry points for the endophytic community, (ii) its differentiation on the basis of the ecological niche variability, and (iii) a two-step colonization process for roots endophytes. Lastly, many isolates showed a strong inhibition potential against human pathogens and the molecular characterization demonstrated also the presence of not previously described isolates that may constitute a reservoir of bioactive compounds relevant in the field of pathogen control, phytoremediation, and human health.
doi:10.1155/2014/650905
PMCID: PMC4058287  PMID: 24971151
5.  Exploring the Anti-Burkholderia cepacia Complex Activity of Essential Oils: A Preliminary Analysis 
In this work we have checked the ability of the essential oils extracted from six different medicinal plants (Eugenia caryophyllata, Origanum vulgare, Rosmarinus officinalis, Lavandula officinalis, Melaleuca alternifolia, and Thymus vulgaris) to inhibit the growth of 18 bacterial type strains belonging to the 18 known species of the Burkholderia cepacia complex (Bcc). These bacteria are opportunistic human pathogens that can cause severe infection in immunocompromised patients, especially those affected by cystic fibrosis (CF), and are often resistant to multiple antibiotics. The analysis of the aromatograms produced by the six oils revealed that, in spite of their different chemical composition, all of them were able to contrast the growth of Bcc members. However, three of them (i.e., Eugenia caryophyllata, Origanum vulgare, and Thymus vulgaris) were particularly active versus the Bcc strains, including those exhibiting a high degree or resistance to ciprofloxacin, one of the most used antibiotics to treat Bcc infections. These three oils are also active toward both environmental and clinical strains (isolated from CF patients), suggesting that they might be used in the future to fight B. cepacia complex infections.
doi:10.1155/2014/573518
PMCID: PMC3950482  PMID: 24701243
6.  Permanent draft genome sequences of the symbiotic nitrogen fixing Ensifer meliloti strains BO21CC and AK58 
Standards in Genomic Sciences  2013;9(2):325-333.
Ensifer (syn. Sinorhizobium) meliloti is an important symbiotic bacterial species that fixes nitrogen. Strains BO21CC and AK58 were previously investigated for their substrate utilization and their plant-growth promoting abilities showing interesting features. Here, we describe the complete genome sequence and annotation of these strains. BO21CC and AK58 genomes are 6,985,065 and 6,974,333 bp long with 6,746 and 6,992 genes predicted, respectively.
doi:10.4056/sigs.3797438
PMCID: PMC4062632  PMID: 24976889
Aerobic; motile; Gram-negative; mesophilic; chemoorganotrophic; chemoautotrophic; soil; plant symbiont; biological nitrogen fixation; Ensifer (Sinorhizobium) meliloti; legume yield
7.  Replicon-Dependent Bacterial Genome Evolution: The Case of Sinorhizobium meliloti 
Genome Biology and Evolution  2013;5(3):542-558.
Many bacterial species, such as the alphaproteobacterium Sinorhizobium meliloti, are characterized by open pangenomes and contain multipartite genomes consisting of a chromosome and other large-sized replicons, such as chromids, megaplasmids, and plasmids. The evolutionary forces in both functional and structural aspects that shape the pangenome of species with multipartite genomes are still poorly understood. Therefore, we sequenced the genomes of 10 new S. meliloti strains, analyzed with four publicly available additional genomic sequences. Results indicated that the three main replicons present in these strains (a chromosome, a chromid, and a megaplasmid) partly show replicon-specific behaviors related to strain differentiation. In particular, the pSymB chromid was shown to be a hot spot for positively selected genes, and, unexpectedly, genes resident in the pSymB chromid were also found to be more widespread in distant taxa than those located in the other replicons. Moreover, through the exploitation of a DNA proximity network, a series of conserved “DNA backbones” were found to shape the evolution of the genome structure, with the rest of the genome experiencing rearrangements. The presented data allow depicting a scenario where the pSymB chromid has a distinctive role in intraspecies differentiation and in evolution through positive selection, whereas the pSymA megaplasmid mostly contributes to structural fluidity and to the emergence of new functions, indicating a specific evolutionary role for each replicon in the pangenome evolution.
doi:10.1093/gbe/evt027
PMCID: PMC3622305  PMID: 23431003
chromid; pangenome; bacteria; selection
8.  IL-18 gene promoter polymorphisms are only moderately associated with periodontal disease in Italian population 
Summary
Objective
The aim of this study was to determine the impact of the polymorphisms at position −607 (C/A) and −137 (G/C) in the promoter of the IL-18 gene and their haplotypes, on the individual susceptibility of developing Aggressive (AgP) and/or Chronic (CP) periodontitis.
Materials and methods
A total of 213 unrelated Italian subjects with periodontitis (AgP=109 and CP=104) and 100 periodontal-health subjects were studied. IL-18 gene promoter polymorphisms were analyzed by TaqMan® SNP Genotyping Assays. Genotype and allele frequencies were analyzed using the chi-square test and multiple logistic regression analysis.
Results
χ2 of comparisons between diseased patients and healthy controls indicated a significant differentiation between the control and AP and CP groups (χ2=26.359, P<0.02). Interestingly, genotypes AACG, AACC and AACG have a moderate association with AgP and CP. For alleles, multiple logistic regression analysis showed that the polymorphism CG at position −137 is moderately associated with AgP (ExpB=2.880), while the polymorphism AA at position −607 is moderately associated with CP (ExpB=2.076). Finally, a moderate association of CA at position −607 (ExpB=2.099) with the healthy status compared to aggressive periodontitis was found.
Conclusions
Results obtained indicated the presence of some potential moderate protective and moderate susceptible alleles and genotypes to both aggressive and chronic periodontitis, demonstrating that IL-18 −607 C/A and −137 G/C gene promoter polymorphisms are not suitable diagnostic features for AgP and CP.
PMCID: PMC3535997  PMID: 23289029
periodontitis; IL-18; inflammation
9.  Exploring the plant-associated bacterial communities in Medicago sativa L 
BMC Microbiology  2012;12:78.
Background
Plant-associated bacterial communities caught the attention of several investigators which study the relationships between plants and soil and the potential application of selected bacterial species in crop improvement and protection. Medicago sativa L. is a legume crop of high economic importance as forage in temperate areas and one of the most popular model plants for investigations on the symbiosis with nitrogen fixing rhizobia (mainly belonging to the alphaproteobacterial species Sinorhizobium meliloti). However, despite its importance, no studies have been carried out looking at the total bacterial community associated with the plant. In this work we explored for the first time the total bacterial community associated with M. sativa plants grown in mesocosms conditions, looking at a wide taxonomic spectrum, from the class to the single species (S. meliloti) level.
Results
Results, obtained by using Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis, quantitative PCR and sequencing of 16 S rRNA gene libraries, showed a high taxonomic diversity as well as a dominance by members of the class Alphaproteobacteria in plant tissues. Within Alphaproteobacteria the families Sphingomonadaceae and Methylobacteriaceae were abundant inside plant tissues, while soil Alphaproteobacteria were represented by the families of Hyphomicrobiaceae, Methylocystaceae, Bradyirhizobiaceae and Caulobacteraceae. At the single species level, we were able to detect the presence of S. meliloti populations in aerial tissues, nodules and soil. An analysis of population diversity on nodules and soil showed a relatively low sharing of haplotypes (30-40%) between the two environments and between replicate mesocosms, suggesting drift as main force shaping S. meliloti population at least in this system.
Conclusions
In this work we shed some light on the bacterial communities associated with M. sativa plants, showing that Alphaproteobacteria may constitute an important part of biodiversity in this system, which includes also the well known symbiont S. meliloti. Interestingly, this last species was also found in plant aerial part, by applying cultivation-independent protocols, and a genetic diversity analysis suggested that population structure could be strongly influenced by random drift.
doi:10.1186/1471-2180-12-78
PMCID: PMC3412730  PMID: 22607312
10.  Plant-Bacteria Association and Symbiosis: Are There Common Genomic Traits in Alphaproteobacteria? 
Genes  2011;2(4):1017-1032.
Alphaproteobacteria show a great versatility in adapting to a broad range of environments and lifestyles, with the association between bacteria and plants as one of the most intriguing, spanning from relatively unspecific nonsymbiotic association (as rhizospheric or endophytic strains) to the highly species-specific interaction of rhizobia. To shed some light on possible common genetic features in such a heterogeneous set of plant associations, the genomes of 92 Alphaproteobacteria strains were analyzed with a fuzzy orthologs-species detection approach. This showed that the different habitats and lifestyles of plant-associated bacteria (soil, plant colonizers, symbiont) are partially reflected by the trend to have larger genomes with respect to nonplant-associated species. A relatively large set of genes specific to symbiotic bacteria (73 orthologous groups) was found, with a remarkable presence of regulators, sugar transporters, metabolic enzymes, nodulation genes and several genes with unknown function that could be good candidates for further characterization. Interestingly, 15 orthologous groupspresent in all plant-associated bacteria (symbiotic and nonsymbiotic), but absent in nonplant-associated bacteria, were also found, whose functions were mainly related to regulation of gene expression and electron transport. Two of these orthologous groups were also detected in fully sequenced plant-associated Betaproteobacteria and Gammaproteobacteria. Overall these results lead us to hypothesize that plant-bacteria associations, though quite variable, are partially supported by a conserved set of unsuspected gene functions.
doi:10.3390/genes2041017
PMCID: PMC3927591  PMID: 24710303
bacterial genomes; plant; symbiosis
11.  CONTIGuator: a bacterial genomes finishing tool for structural insights on draft genomes 
Recent developments in sequencing technologies have given the opportunity to sequence many bacterial genomes with limited cost and labor, compared to previous techniques. However, a limiting step of genome sequencing is the finishing process, needed to infer the relative position of each contig and close sequencing gaps. An additional degree of complexity is given by bacterial species harboring more than one replicon, which are not contemplated by the currently available programs. The availability of a large number of bacterial genomes allows geneticists to use complete genomes (possibly from the same species) as templates for contigs mapping.
Here we present CONTIGuator, a software tool for contigs mapping over a reference genome which allows the visualization of a map of contigs, underlining loss and/or gain of genetic elements and permitting to finish multipartite genomes. The functionality of CONTIGuator was tested using four genomes, demonstrating its improved performances compared to currently available programs.
Our approach appears efficient, with a clear visualization, allowing the user to perform comparative structural genomics analysis on draft genomes. CONTIGuator is a Python script for Linux environments and can be used on normal desktop machines and can be downloaded from http://contiguator.sourceforge.net.
doi:10.1186/1751-0473-6-11
PMCID: PMC3133546  PMID: 21693004
Genomics; Genome finishing; Software; Structural genomics
12.  Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti 
BMC Genomics  2011;12:235.
Background
Sinorhizobium meliloti is a model system for the studies of symbiotic nitrogen fixation. An extensive polymorphism at the genetic and phenotypic level is present in natural populations of this species, especially in relation with symbiotic promotion of plant growth. AK83 and BL225C are two nodule-isolated strains with diverse symbiotic phenotypes; BL225C is more efficient in promoting growth of the Medicago sativa plants than strain AK83. In order to investigate the genetic determinants of the phenotypic diversification of S. meliloti strains AK83 and BL225C, we sequenced the complete genomes for these two strains.
Results
With sizes of 7.14 Mbp and 6.97 Mbp, respectively, the genomes of AK83 and BL225C are larger than the laboratory strain Rm1021. The core genome of Rm1021, AK83, BL225C strains included 5124 orthologous groups, while the accessory genome was composed by 2700 orthologous groups. While Rm1021 and BL225C have only three replicons (Chromosome, pSymA and pSymB), AK83 has also two plasmids, 260 and 70 Kbp long. We found 65 interesting orthologous groups of genes that were present only in the accessory genome, consequently responsible for phenotypic diversity and putatively involved in plant-bacterium interaction. Notably, the symbiosis inefficient AK83 lacked several genes required for microaerophilic growth inside nodules, while several genes for accessory functions related to competition, plant invasion and bacteroid tropism were identified only in AK83 and BL225C strains. Presence and extent of polymorphism in regulons of transcription factors involved in symbiotic interaction were also analyzed. Our results indicate that regulons are flexible, with a large number of accessory genes, suggesting that regulons polymorphism could also be a key determinant in the variability of symbiotic performances among the analyzed strains.
Conclusions
In conclusions, the extended comparative genomics approach revealed a variable subset of genes and regulons that may contribute to the symbiotic diversity.
doi:10.1186/1471-2164-12-235
PMCID: PMC3164228  PMID: 21569405
Sinorhizobium meliloti; nodulation; symbiosis; comparative genomics; pangenome; panregulon
13.  The diversity and evolution of cell cycle regulation in alpha-proteobacteria: a comparative genomic analysis 
BMC Systems Biology  2010;4:52.
Background
In the bacterium Caulobacter crescentus, CtrA coordinates DNA replication, cell division, and polar morphogenesis and is considered the cell cycle master regulator. CtrA activity varies during cell cycle progression and is modulated by phosphorylation, proteolysis and transcriptional control. In a phosphorylated state, CtrA binds specific DNA sequences, regulates the expression of genes involved in cell cycle progression and silences the origin of replication. Although the circuitry regulating CtrA is known in molecular detail in Caulobacter, its conservation and functionality in the other alpha-proteobacteria are still poorly understood.
Results
Orthologs of Caulobacter factors involved in the regulation of CtrA were systematically scanned in genomes of alpha-proteobacteria. In particular, orthologous genes of the divL-cckA-chpT-ctrA phosphorelay, the divJ-pleC-divK two-component system, the cpdR-rcdA-clpPX proteolysis system, the methyltransferase ccrM and transcriptional regulators dnaA and gcrA were identified in representative genomes of alpha-proteobacteria. CtrA, DnaA and GcrA binding sites and CcrM putative methylation sites were predicted in promoter regions of all these factors and functions controlled by CtrA in all alphas were predicted.
Conclusions
The regulatory cell cycle architecture was identified in all representative alpha-proteobacteria, revealing a high diversification of circuits but also a conservation of logical features. An evolutionary model was proposed where ancient alphas already possessed all modules found in Caulobacter arranged in a variety of connections. Two schemes appeared to evolve: a complex circuit in Caulobacterales and Rhizobiales and a simpler one found in Rhodobacterales.
doi:10.1186/1752-0509-4-52
PMCID: PMC2877005  PMID: 20426835
14.  Comparative genomics of VirR regulons in Clostridium perfringens strains 
BMC Microbiology  2010;10:65.
Background
Clostridium perfringens is a Gram-positive anaerobic bacterium causing severe diseases such as gas gangrene and pseudomembranosus colitis, that are generally due to the secretion of powerful extracellular toxins. The expression of toxin genes is mainly regulated by VirR, the response regulator of a two-component system. Up to now few targets only are known for this regulator and mainly in one strain (Strain 13). Due to the high genomic and phenotypic variability in toxin production by different strains, the development of effective strategies to counteract C. perfringens infections requires methodologies to reconstruct the VirR regulon from genome sequences.
Results
We implemented a two step computational strategy allowing to consider available information concerning VirR binding sites in a few species to scan all genomes of the same species, assuming the VirR targets are at least partially conserved across these strains. Results obtained are in agreement with previous works where experimental validation of the promoters have been performed and showed the presence of a core and an accessory regulon of VirR in C. perfringens strains with three target genes also located on plasmids. Moreover, the type E strain JGS1987 has the largest predicted regulon with as many as 10 VirR targets not found in the other genomes.
Conclusions
In this work we exploited available experimental information concerning the targets of the VirR toxin regulator in one C. perfringens strain to obtain plausible predictions concerning target genes in genomes and plasmids of nearby strains. Our predictions are available for wet-lab researchers working on less characterized C. perfringens strains that can thus design focused experiments reducing the search space of their experiments and increasing the probability of characterizing positive targets with less efforts. Main result was that the VirR regulon is variable in different C. perfringens strains with 4 genes controlled in all but one strains and most genes controlled in one or two strains only.
doi:10.1186/1471-2180-10-65
PMCID: PMC2838878  PMID: 20184757
15.  Exploring the evolutionary dynamics of plasmids: the Acinetobacter pan-plasmidome 
Background
Prokaryotic plasmids have a dual importance in the microbial world: first they have a great impact on the metabolic functions of the host cell, providing additional traits that can be accumulated in the cell without altering the gene content of the bacterial chromosome. Additionally and/or alternatively, from a genome perspective, plasmids can provide a basis for genomic rearrangements via homologous recombination and so they can facilitate the loss or acquisition of genes during these events, which eventually may lead to horizontal gene transfer (HGT). Given their importance for conferring adaptive traits to the host organisms, the interest in plasmid sequencing is growing and now many complete plasmid sequences are available online.
Results
By using the newly developed Blast2Network bioinformatic tool, a comparative analysis was performed on the plasmid and chromosome sequence data available for bacteria belonging to the genus Acinetobacter, an ubiquitous and clinically important group of γ-proteobacteria. Data obtained showed that, although most of the plasmids lack mobilization and transfer functions, they have probably a long history of rearrangements with other plasmids and with chromosomes. Indeed, traces of transfers between different species can be disclosed.
Conclusions
We show that, by combining plasmid and chromosome similarity, identity based, network analysis, an evolutionary scenario can be described even for highly mobile genetic elements that lack extensively shared genes. In particular we found that transposases and selective pressure for mercury resistance seem to have played a pivotal role in plasmid evolution in Acinetobacter genomes sequenced so far.
doi:10.1186/1471-2148-10-59
PMCID: PMC2848654  PMID: 20181243
16.  Metabolic Capacity of Sinorhizobium (Ensifer) meliloti Strains as Determined by Phenotype MicroArray Analysis▿ † 
Applied and Environmental Microbiology  2009;75(16):5396-5404.
Sinorhizobium meliloti is a soil bacterium that fixes atmospheric nitrogen in plant roots. The high genetic diversity of its natural populations has been the subject of extensive analysis. Recent genomic studies of several isolates revealed a high content of variable genes, suggesting a correspondingly large phenotypic differentiation among strains of S. meliloti. Here, using the Phenotype MicroArray (PM) system, hundreds of different growth conditions were tested in order to compare the metabolic capabilities of the laboratory reference strain Rm1021 with those of four natural S. meliloti isolates previously analyzed by comparative genomic hybridization (CGH). The results of PM analysis showed that most phenotypic differences involved carbon source utilization and tolerance to osmolytes and pH, while fewer differences were scored for nitrogen, phosphorus, and sulfur source utilization. Only the variability of the tested strain in tolerance to sodium nitrite and ammonium sulfate of pH 8 was hypothesized to be associated with the genetic polymorphisms detected by CGH analysis. Colony and cell morphologies and the ability to nodulate Medicago truncatula plants were also compared, revealing further phenotypic diversity. Overall, our results suggest that the study of functional (phenotypic) variability of S. meliloti populations is an important and complementary step in the investigation of genetic polymorphism of rhizobia and may help to elucidate rhizobial evolutionary dynamics, including adaptation to diverse environments.
doi:10.1128/AEM.00196-09
PMCID: PMC2725449  PMID: 19561177
17.  Analysis of plasmid genes by phylogenetic profiling and visualization of homology relationships using Blast2Network 
BMC Bioinformatics  2008;9:551.
Background
Phylogenetic methods are well-established bioinformatic tools for sequence analysis, allowing to describe the non-independencies of sequences because of their common ancestor. However, the evolutionary profiles of bacterial genes are often complicated by hidden paralogy and extensive and/or (multiple) horizontal gene transfer (HGT) events which make bifurcating trees often inappropriate. In this context, plasmid sequences are paradigms of network-like relationships characterizing the evolution of prokaryotes. Actually, they can be transferred among different organisms allowing the dissemination of novel functions, thus playing a pivotal role in prokaryotic evolution. However, the study of their evolutionary dynamics is complicated by the absence of universally shared genes, a prerequisite for phylogenetic analyses.
Results
To overcome such limitations we developed a bioinformatic package, named Blast2Network (B2N), allowing the automatic phylogenetic profiling and the visualization of homology relationships in a large number of plasmid sequences. The software was applied to the study of 47 completely sequenced plasmids coming from Escherichia, Salmonella and Shigella spps.
Conclusion
The tools implemented by B2N allow to describe and visualize in a new way some of the evolutionary features of plasmid molecules of Enterobacteriaceae; in particular it helped to shed some light on the complex history of Escherichia, Salmonella and Shigella plasmids and to focus on possible roles of unannotated proteins.
The proposed methodology is general enough to be used for comparative genomic analyses of bacteria.
doi:10.1186/1471-2105-9-551
PMCID: PMC2640388  PMID: 19099604
18.  Large-scale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains 
BMC Genomics  2005;6:158.
Background
Sinorhizobium meliloti is a soil bacterium that forms nitrogen-fixing nodules on the roots of leguminous plants such as alfalfa (Medicago sativa). This species occupies different ecological niches, being present as a free-living soil bacterium and as a symbiont of plant root nodules. The genome of the type strain Rm 1021 contains one chromosome and two megaplasmids for a total genome size of 6 Mb. We applied comparative genomic hybridisation (CGH) on an oligonucleotide microarrays to estimate genetic variation at the genomic level in four natural strains, two isolated from Italian agricultural soil and two from desert soil in the Aral Sea region.
Results
From 4.6 to 5.7 percent of the genes showed a pattern of hybridisation concordant with deletion, nucleotide divergence or ORF duplication when compared to the type strain Rm 1021. A large number of these polymorphisms were confirmed by sequencing and Southern blot. A statistically significant fraction of these variable genes was found on the pSymA megaplasmid and grouped in clusters. These variable genes were found to be mainly transposases or genes with unknown function.
Conclusion
The obtained results allow to conclude that the symbiosis-required megaplasmid pSymA can be considered the major hot-spot for intra-specific differentiation in S. meliloti.
doi:10.1186/1471-2164-6-158
PMCID: PMC1298293  PMID: 16283928
19.  Genetic Diversity and Dynamics of Sinorhizobium meliloti Populations Nodulating Different Alfalfa Cultivars in Italian Soils 
Applied and Environmental Microbiology  2000;66(11):4785-4789.
We analyzed the genetic diversity of 531 Sinorhizobium meliloti strains isolated from nodules of Medicago sativa cultivars in two different Italian soils during 4 years of plant growth. The isolates were analyzed for DNA polymorphism with the random amplified polymorphic DNA method. The populations showed a high level of genetic polymorphism distributed throughout all the isolates, with 440 different haplotypes. Analysis of molecular variance allowed us to relate the genetic structure of the symbiotic population to various factors, including soil type, alfalfa cultivar, individual plants within a cultivar, and time. Some of these factors significantly affected the genetic structure of the population, and their relative influence changed with time. At the beginning of the experiment, the soil of origin and, even more, the cultivar significantly influenced the distribution of genetic variability of S. meliloti. After 3 years, the rhizobium population was altered; it showed a genetic structure based mainly on differences among plants, while the effects of soil and cultivar were not significant.
PMCID: PMC92380  PMID: 11055924

Results 1-19 (19)