Search tips
Search criteria

Results 1-17 (17)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Monoclonal antibody therapeutics with up to five specificities 
mAbs  2013;5(2):208-218.
The recognition that few human diseases are thoroughly addressed by mono-specific, monoclonal antibodies (mAbs) continues to drive the development of antibody therapeutics with additional specificities and enhanced activity. Historically, efforts to engineer additional antigen recognition into molecules have relied predominantly on the reformatting of immunoglobulin domains. In this report we describe a series of fully functional mAbs to which additional specificities have been imparted through the recombinant fusion of relatively short polypeptides sequences. The sequences are selected for binding to a particular target from combinatorial libraries that express linear, disulfide-constrained, or domain-based structures. The potential for fusion of peptides to the N- and C- termini of both the heavy and light chains affords the bivalent expression of up to four different peptides. The resulting molecules, called zybodies, can gain up to four additional specificities, while retaining the original functionality and specificity of the scaffold antibody. We explore the use of two clinically significant oncology antibodies, trastuzumab and cetuximab, as zybody scaffolds and demonstrate functional enhancements in each case. The affect of fusion position on both peptide and scaffold function is explored, and penta-specific zybodies are demonstrated to simultaneously engage five targets (ErbB2, EGFR, IGF-1R, Ang2 and integrin αvβ3). Bispecific, trastuzumab-based zybodies targeting ErbB2 and Ang2 are shown to exhibit superior efficacy to trastuzumab in an angiogenesis-dependent xenograft tumor model. A cetuximab-based bispecific zybody that targeting EGFR and ErbB3 simultaneously disrupted multiple intracellular signaling pathways; inhibited tumor cell proliferation; and showed efficacy superior to that of cetuximab in a xenograft tumor model.
PMCID: PMC3893231  PMID: 23575268
antibody engineering; multi-specific antibody
2.  Simultaneous targeting of TNF and Ang2 with a novel bispecific antibody enhances efficacy in an in vivo model of arthritis 
mAbs  2012;4(5):600-613.
Despite the clinical success of anti-tumor necrosis factor (TNF) therapies in the treatment of inflammatory conditions such as rheumatoid arthritis, Crohn disease and psoriasis, full control of the diseases only occurs in a subset of patients and there is a need for new therapeutics with improved efficacy against broader patient populations. One possible approach is to combine biological therapeutics, but both the cost of the therapeutics and the potential for additional toxicities needs to be considered. In addition to the various mediators of immune and inflammatory pathways, angiogenesis is reported to contribute substantially to the overall pathogenesis of inflammatory diseases. The combination of an anti-angiogenic agent with anti-TNF into one molecule could be more efficacious without the risk of severe immunosuppression. To evaluate this approach with our Zybody technology, we generated bispecific antibodies that contain an Ang2 targeting peptide genetically fused to the anti-TNF antibody adalimumab (Humira®). The bispecific molecules retain the binding and functional characteristics of the anti-TNF antibody, but with additional activity that neutralizes Ang2. In a TNF transgenic mouse model of arthritis, the bispecific anti-TNF-Ang2 molecules showed a dose-dependent reduction in both clinical symptoms and histological scores that were significantly better than that achieved by adalimumab alone.
PMCID: PMC3499301  PMID: 22864384
Adalimumab; Ang2; TNF; Zybody; arthritis; bispecific antibody; inflammation
3.  IL-9 Governs Allergen-induced Mast Cell Numbers in the Lung and Chronic Remodeling of the Airways 
IL-9 is a pleiotropic cytokine that has multiple effects on structural as well as numerous hematopoietic cells, which are central to the pathogenesis of asthma.
The contribution of IL-9 to asthma pathogenesis has thus far been unclear, due to conflicting reports in the literature. These earlier studies focused on the role of IL-9 in acute inflammatory models; here we have investigated the effects of IL-9 blockade during chronic allergic inflammation.
Mice were exposed to either prolonged ovalbumin or house dust mite allergen challenge to induce chronic inflammation and airway remodeling.
Measurements and Main Results
We found that IL-9 governs allergen-induced mast cell (MC) numbers in the lung and has pronounced effects on chronic allergic inflammation. Anti–IL-9 antibody–treated mice were protected from airway remodeling with a concomitant reduction in mature MC numbers and activation, in addition to decreased expression of the profibrotic mediators transforming growth factor-β1, vascular endothelial growth factor, and fibroblast growth factor-2 in the lung. Airway remodeling was associated with impaired lung function in the peripheral airways and this was reversed by IL-9 neutralization. In human asthmatic lung tissue, we identified MCs as the main IL-9 receptor expressing population and found them to be sources of vascular endothelial growth factor and fibroblast growth factor-2.
Our data suggest an important role for an IL-9-MC axis in the pathology associated with chronic asthma and demonstrate that an impact on this axis could lead to a reduction in chronic inflammation and improved lung function in patients with asthma.
PMCID: PMC3385369  PMID: 20971830
IL-9; mast cells; asthma; airway remodeling; AHR
4.  Respiratory Syncytial Virus (RSV) RNA loads in peripheral blood correlates with disease severity in mice 
Respiratory Research  2010;11(1):125.
Respiratory Syncytial Virus (RSV) infection is usually restricted to the respiratory epithelium. Few studies have documented the presence of RSV in the systemic circulation, however there is no consistent information whether virus detection in the blood correlates with disease severity.
Balb/c mice were inoculated with live RSV, heat-inactivated RSV or medium. A subset of RSV-infected mice was treated with anti-RSV antibody 72 h post-inoculation. RSV RNA loads were measured by PCR in peripheral blood from day 1-21 post-inoculation and were correlated with upper and lower respiratory tract viral loads, the systemic cytokine response, lung inflammation and pulmonary function. Immunohistochemical staining was used to define the localization of RSV antigens in the respiratory tract and peripheral blood.
RSV RNA loads were detected in peripheral blood from day 1 to 14 post-inoculation, peaked on day 5 and significantly correlated with nasal and lung RSV loads, airway obstruction, and blood CCL2 and CXCL1 expression. Treatment with anti-RSV antibody reduced blood RSV RNA loads and improved airway obstruction. Immunostaining identified RSV antigens in alveolar macrophages and peripheral blood monocytes.
RSV RNA was detected in peripheral blood upon infection with live RSV, followed a time-course parallel to viral loads assessed in the respiratory tract and was significantly correlated with RSV-induced airway disease.
PMCID: PMC2946301  PMID: 20843364
5.  Cell-type specific recognition of human Metapneumoviruses by RIG-I and TLR7 and viral interference of RIG-I ligand recognition by HMPVB1 Phosphoprotein 
Human Metapneumoviruses (HMPV) are recently identified Paramyxoviridae that contribute to respiratory tract infections in children. No effective treatments or vaccines are available. Successful defense against virus infection relies on early detection by germline encoded pattern recognition receptors and activation of cytokine and type I interferon genes. Recently, the RNA helicase Retinoic acid inducible gene (RIG-I) has been shown to sense HMPV. In this study, we investigated the ability of two prototype strains of HMPV (A1 [NL\1\00] and B1 [NL\1\99]) to activate RIG-I and induce type I interferons (IFN). Despite the ability of both HMPV-A1 and B1 to infect and replicate in cell lines and primary cells, only the HMPV-A1 strain triggered RIG-I to induce IFNA/B gene transcription. The failure of the HMPV-B1 strain to elicit type I IFN production was dependent on the B1 phosphoprotein, which specifically prevented RIG-I-mediated sensing of HMPV viral 5’ triphosphate RNA. In contrast to most cell types, plasmacytoid dendritic cells (PDC) displayed a unique ability to sense both the A1 and B1 strains and in this case sensing was via Toll-like receptor (TLR)-7 rather than RIG-I. Collectively, these data reveal differential mechanisms of sensing for two closely related viruses, which operate in cell-type specific manners.
PMCID: PMC2834787  PMID: 20042593
Viral; Signal Transduction; Knockout mouse
6.  Development of Potential Pharmacodynamic and Diagnostic Markers for Anti-IFN-α Monoclonal Antibody Trials in Systemic Lupus Erythematosus 
To identify potential pharmacodynamic biomarkers to guide dose selection in clinical trials using anti-interferon-alpha (IFN-α) monoclonal antibody (mAb) therapy for systemic lupus erythematosus (SLE), we used an Affymetrix human genome array platform and identified 110 IFN-α/β-inducible transcripts significantly upregulated in whole blood (WB) of 41 SLE patients. The overexpression of these genes was confirmed prospectively in 54 additional SLE patients and allowed for the categorization of the SLE patients into groups of high, moderate, and weak overexpressers of IFN-α/β-inducible genes. This approach could potentially allow for an accurate assessment of drug target neutralization in early trials of anti-IFN-α mAb therapy for SLE. Furthermore, ex vivo stimulation of healthy donor peripheral blood mononuclear cells with SLE patient serum and subsequent neutralization with anti-IFN-α mAb or anti-IFN-α receptor mAb showed that anti-IFN-α mAb has comparable effects of neutralizing the overexpression of type I IFN-inducible genes as that of anti-IFNAR mAb. These results suggest that IFN-α, and not other members of type I IFN family in SLE patients, is mainly responsible for the induction of type I IFN-inducible genes in WB of SLE patients. Taken together, these data strengthen the view of IFN-α as a therapeutic target for SLE.
PMCID: PMC2950308  PMID: 20948567
7.  Antibody-Dependent Cell-Mediated Cytotoxicity Effector-Enhanced EphA2 Agonist Monoclonal Antibody Demonstrates Potent Activity against Human Tumors1 
Neoplasia (New York, N.Y.)  2009;11(6):509-517.
EphA2 is a receptor tyrosine kinase that has been shown to be overexpressed in a variety of human tumor types. Previous studies demonstrated that agonist monoclonal antibodies targeting EphA2 induced the internalization and degradation of the receptor, thereby abolishing its oncogenic effects. In this study, the in vitro and in vivo antibody-dependent cell-mediated cytotoxicity (ADCC) activity of EphA2 effector-enhanced agonist monoclonal antibodies was evaluated. With tumor cell lines and healthy human peripheral blood monocytes, the EphA2 antibodies demonstrated ∼80% tumor cell killing. In a dose-dependent manner, natural killer (NK) cells were required for the in vitro ADCC activity and became activated as demonstrated by the induction of cell surface expression of CD107a. To assess the role of NK cells on antitumor efficacy in vivo, the EphA2 antibodies were evaluated in xenograft models in severe compromised immunodeficient (SCID) mice (which have functional NK cells and monocytes) and SCID nonobese diabetic (NOD) mice (which largely lack functional NK cells and monocytes). Dosing of EphA2 antibody in the SCID murine tumor model resulted in a 6.2-fold reduction in tumor volume, whereas the SCID/nonobese diabetic model showed a 1.6-fold reduction over the isotype controls. Together, these results demonstrate that the anti-EphA2 monoclonal antibodies may function through at least two mechanisms of action: EphA2 receptor activation and ADCC-mediated activity. These novel EphA2 monoclonal antibodies provide additional means by which host effector mechanisms can be activated for selective destruction of EphA2-expressing tumor cells.
PMCID: PMC2685440  PMID: 19484140
8.  Correction: Type I Interferon: Potential Therapeutic Target for Psoriasis? 
PLoS ONE  2009;4(3):10.1371/annotation/fbcbcab9-2e87-4ec7-af6e-c6e9e64ad4b3.
PMCID: PMC2665006
9.  Identification of antibody neutralization epitopes on the fusion protein of human metapneumovirus 
The Journal of General Virology  2008;89(Pt 12):3113-3118.
Human metapneumovirus (hMPV) is genetically related to respiratory syncytial virus (RSV); both cause respiratory tract illnesses ranging from a mild cough to bronchiolitis and pneumonia. The F protein-directed monoclonal antibody (mAb) palivizumab has been shown to prevent severe lower respiratory tract RSV infection in animals and humans. We have previously reported on a panel of mAbs against the hMPV F protein that neutralize hMPV in vitro and, in two cases, in vivo. Here we describe the generation of hMPV mAb-resistant mutants (MARMs) to these neutralizing antibodies. Sequencing the F proteins of the hMPV MARMs identified several neutralizing epitopes. Interestingly, some of the epitopes mapped on the hMPV F protein coincide with homologous regions mapped previously on the RSV F protein, including the site against which the broadly protective mAb palivizumab is directed. This suggests that these homologous regions play important, conserved functions in both viruses.
PMCID: PMC2885031  PMID: 19008400
10.  Type I Interferon: Potential Therapeutic Target for Psoriasis? 
PLoS ONE  2008;3(7):e2737.
Psoriasis is an immune-mediated disease characterized by aberrant epidermal differentiation, surface scale formation, and marked cutaneous inflammation. To better understand the pathogenesis of this disease and identify potential mediators, we used whole genome array analysis to profile paired lesional and nonlesional psoriatic skin and skin from healthy donors.
Methodology/Principal Findings
We observed robust overexpression of type I interferon (IFN)–inducible genes and genomic signatures that indicate T cell and dendritic cell infiltration in lesional skin. Up-regulation of mRNAs for IFN-α subtypes was observed in lesional skin compared with nonlesional skin. Enrichment of mature dendritic cells and 2 type I IFN–inducible proteins, STAT1 and ISG15, were observed in the majority of lesional skin biopsies. Concordant overexpression of IFN-γ and TNF-α–inducible gene signatures occurred at the same disease sites.
Up-regulation of TNF-α and elevation of the TNF-α–inducible gene signature in lesional skin underscore the importance of this cytokine in psoriasis; these data describe a molecular basis for the therapeutic activity of anti–TNF-α agents. Furthermore, these findings implicate type I IFNs in the pathogenesis of psoriasis. Consistent and significant up-regulation of type I IFNs and their associated gene signatures in psoriatic skin suggest that type I IFNs may be potential therapeutic targets in psoriasis treatment.
PMCID: PMC2481274  PMID: 18648529
11.  Type I Interferon–Inducible Gene Expression in Blood Is Present and Reflects Disease Activity in Dermatomyositis and Polymyositis 
Arthritis and rheumatism  2007;56(11):3784-3792.
To apply gene expression profiling to the study of peripheral blood mononuclear cells from patients with inflammatory myopathies, in order to provide insight into disease pathogenesis and identify potential biomarkers associated with disease activity.
We used Affymetrix whole-genome microarrays to measure the expression of ~38,500 genes in 65 blood and 15 muscle samples from 44 patients with dermatomyositis (DM), polymyositis (PM), inclusion body myositis (IBM), myasthenia gravis, or genetically determined myopathies and from 12 healthy volunteers. In 9 patients, 2 samples were obtained at different time points, when disease was either active or improving, and these paired blood samples were also compared. Bioinformatics techniques were used to identify genes with significant differential expression among diagnostic categories and in relation to disease activity. We corroborated the microarray data with quantitative real-time reverse transcriptase–polymerase chain reaction.
Most patients with active DM or PM, but not patients with IBM, had significant and high up-regulation of the type I interferon-α/β (IFNα/β)–inducible genes in blood. Furthermore, the up-regulation of these genes correlated with disease activity in DM and PM, with down-regulation occurring when disease was controlled with treatment.
DM and PM are diseases characterized by the systemic overexpression of IFNα/β-inducible genes. The magnitude of the overexpression of these genes is higher in DM and correlates with disease activity in both disorders. Although PM and IBM have been modeled as having similar immunologic processes occurring within muscle, there are substantial differences in the expression of IFNα/β-inducible genes in blood in these diseases.
PMCID: PMC2443782  PMID: 17968926
12.  Genomic-Based High Throughput Screening Identifies Small Molecules That Differentially Inhibit the Antiviral and Immunomodulatory Effects of IFN-α 
Molecular Medicine  2008;14(7-8):374-382.
Multiple lines of evidence suggest that inhibition of Type I Interferons, including IFN-α, may provide a therapeutic benefit for autoimmune diseases. Using a chemical genomics approach integrated with cellular and in vivo assays, we screened a small compound library to identify modulators of IFN-α biological effects. A genomic fingerprint was developed from both ex vivo patient genomic information and in vitro gene modulation from IFN-α cell-based stimulation. A high throughput genomic-based screen then was applied to prioritize 268 small molecule inhibitors targeting 41 different intracellular signaling pathways. Active compounds were profiled further for their ability to inhibit the activation and differentiation of human monocytes using disease-related stimuli. Inhibitors targeting NF-κB or Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signaling emerged as “dissociated inhibitors” because they did not modulate IFN-α anti-viral effects against HSV-1 but potently inhibited other immune-related functions. This work describes a novel strategy to identify small molecule inhibitors for the treatment of autoimmune disorders.
PMCID: PMC2376640  PMID: 18475307
13.  Motavizumab, A Neutralizing Anti-Respiratory Syncytial Virus (Rsv) Monoclonal Antibody Significantly Modifies The Local And Systemic Cytokine Responses Induced By Rsv In The Mouse Model 
Virology Journal  2007;4:109.
Motavizumab (MEDI-524) is a monoclonal antibody with enhanced neutralizing activity against RSV. In mice, motavizumab suppressed RSV replication which resulted in significant reduction of clinical parameters of disease severity. We evaluated the effect of motavizumab on the local and systemic immune response induced by RSV in the mouse model. Balb/c mice were intranasally inoculated with 106.5 PFU RSV A2 or medium. Motavizumab was given once intraperitoneally (1.25 mg/mouse) as prophylaxis, 24 h before virus inoculation. Bronchoalveolar lavage (BAL) and serum samples were obtained at days 1, 5 (acute) and 28 (long-term) post inoculation and analyzed with a multiplex assay (Beadlyte Upstate, NY) for simultaneous quantitation of 18 cytokines: IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, KC (similar to human IL-8), IL-10, IL-12p40, IL-12p70, IL-13, IL-17, TNF-α, MCP-1, RANTES, IFN-γ and GM-CSF. Overall, cytokine concentrations were lower in serum than in BAL samples. By day 28, only KC was detected in BAL specimens at low concentrations in all groups. Administration of motavizumab significantly reduced (p < 0.05) BAL concentrations of IL-1α, IL-12p70 and TNF-α on day 1, and concentrations of IFN-γ on days 1 and 5 compared with RSV-infected untreated controls. In the systemic compartment, the concentrations of IL-10, IFN-γ and KC were significantly reduced in the motavizumab-treated mice compared with the untreated controls. In summary, prophylactic administration of motavizumab was associated with significant reductions on RSV replication and concentrations of cytokine and chemokines, which are likely related to the improvement observed in clinical markers of disease severity.
PMCID: PMC2222633  PMID: 17961258
14.  Isolation and Characterization of Monoclonal Antibodies Which Neutralize Human Metapneumovirus In Vitro and In Vivo 
Journal of Virology  2006;80(16):7799-7806.
Human metapneumovirus (hMPV) is a recently described member of the Paramyxoviridae family/Pneumovirinae subfamily and shares many common features with respiratory syncytial virus (RSV), another member of the same subfamily. hMPV causes respiratory tract illnesses that, similar to human RSV, occur predominantly during the winter months and have symptoms that range from mild to severe cough, bronchiolitis, and pneumonia. Like RSV, the hMPV virus can be subdivided into two genetic subgroups, A and B. With RSV, a single monoclonal antibody directed at the fusion (F) protein can prevent severe lower respiratory tract RSV infection. Because of the high level of sequence conservation of the F protein across all the hMPV subgroups, this protein is likely to be the preferred antigenic target for the generation of cross-subgroup neutralizing antibodies. Here we describe the generation of a panel of neutralizing monoclonal antibodies that bind to the hMPV F protein. A subset of these antibodies has the ability to neutralize prototypic strains of both the A and B hMPV subgroups in vitro. Two of these antibodies exhibited high-affinity binding to the F protein and were shown to protect hamsters against infection with hMPV. The data suggest that a monoclonal antibody could be used prophylactically to prevent lower respiratory tract disease caused by hMPV.
PMCID: PMC1563801  PMID: 16873237
15.  Comparative Effects of Two Neutralizing Anti-Respiratory Syncytial Virus (RSV) Monoclonal Antibodies in the RSV Murine Model: Time versus Potency 
Antimicrobial Agents and Chemotherapy  2005;49(11):4700-4707.
Respiratory syncytial virus (RSV) is the leading viral pathogen responsible for bronchiolitis and pneumonia in infants and young children worldwide. We have previously shown in the mouse model that treatment with an anti-RSV neutralizing monoclonal antibody (MAb) against the F glycoprotein of RSV, palivizumab, decreased lung inflammation, airway obstruction, and postmethacholine airway hyperresponsiveness. MEDI-524, or Numax, is a new MAb derived from palivizumab with enhanced neutralizing activity against RSV. We compared the effects of these two MAbs on different markers of disease severity using the murine model of RSV infection. BALB/c mice were intranasally inoculated with RSV A2. Palivizumab or MEDI-524 was administered once at either 24 h before or 48 h after RSV inoculation. Regardless of the time of administration, all treated mice showed significantly decreased RSV loads in bronchoalveolar lavage samples measured by plaque assay. Only MEDI-524 given at −24 h significantly decreased lung RSV RNA loads on days 5 and 28 after RSV inoculation. Pulmonary histopathologic scores, airway obstruction, and postmethacholine airway hyperresponsiveness were significantly reduced in mice treated with MEDI-524 at 24 h before inoculation, compared with untreated controls and the other regimens evaluated. MEDI-524 was superior to palivizumab on several outcome variables of RSV disease assessed in the mouse model: viral replication, inflammatory and clinical markers of acute disease severity, and long-term pulmonary abnormalities.
PMCID: PMC1280119  PMID: 16251314
16.  Identification of Amino Acid Residues Important for Ligand Binding to Fas 
The Journal of Experimental Medicine  1997;185(8):1487-1492.
The interaction of Fas (CD95), a member of the tumor necrosis factor receptor (TNFR) family, and its ligand (FasL) triggers programmed cell death (apoptosis) and is involved in the regulation of immune responses. Although the Fas–FasL interaction is conserved across species barriers, little is currently known about the molecular details of this interaction. Our aim was to identify residues in Fas that are important for ligand binding. With the aid of a Fas molecular model, candidate amino acid residues were selected in the Fas extracellular domain 2 (D2) and D3 and subjected to serine-scanning mutagenesis to produce mutant Fas molecules in the form of Ig fusion proteins. The effects of these mutations on FasL binding was examined by measuring the ability of these proteins to inhibit FasL-mediated apoptosis of Jurkat cells and bind FasL in ELISA and BIAcore™ assays. Mutation of two amino acids, R86 and R87 (D2), to serine totally abolished the ability of Fas to interact with its ligand, whereas mutants K84S, L90S, E93S (D2), or H126S (D3) showed reduced binding compared with wild-type Fas. Two mutants (K78S and H95S) bound FasL comparably to wild type. Therefore, the binding of FasL involves residues in two domains that correspond to positions critical for ligand binding in other family members (TNFR and CD40) but are conserved between murine and human Fas.
PMCID: PMC2196280  PMID: 9126929
17.  Differential Induction of Apoptosis by Fas–Fas Ligand Interactions in Human Monocytes and Macrophages 
The Journal of Experimental Medicine  1997;185(8):1511-1516.
Human monocytes undergo spontaneous apoptosis upon culture in vitro; removal of serum from the media dramatically increases the rate of this process. Monocyte apoptosis can be significantly abrogated by the addition of growth factors or proinflammatory mediators. We have evaluated the role of the endogenous Fas–Fas ligand (FasL) interaction in the induction of this spontaneous apoptosis and found that a Fas–immunoglobulin (Ig) fusion protein, an antagonistic anti-Fas monoclonal antibody and a rabbit anti-FasL antibody all greatly reduced the onset of apoptosis. The results indicate that spontaneous death of monocytes is mediated via an autocrine or paracrine pathway. Treatment of the cells with growth factors or cytokines that prevented spontaneous apoptosis had no major effects on the expression of Fas or FasL. Additionally, monocyte-derived macrophages were found to express both Fas and FasL but did not undergo spontaneous apoptosis and were not sensitive to stimulation by an agonistic anti-Fas IgM. These results indicate that protective mechanisms in these cells exist at a site downstream of the receptor–ligand interaction.
PMCID: PMC2196275  PMID: 9126933

Results 1-17 (17)