PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  A Yersinia pestis-specific, lytic phage preparation significantly reduces viable Y. pestis on various hard surfaces experimentally contaminated with the bacterium 
Bacteriophage  2012;2(3):168-177.
Five Y. pestis bacteriophages obtained from various sources were characterized to determine their biological properties, including their taxonomic classification, host range and genomic diversity. Four of the phages (YpP-G, Y, R and YpsP-G) belong to the Podoviridae family, and the fifth phage (YpsP-PST) belongs to the Myoviridae family, of the order Caudovirales comprising of double-stranded DNA phages. The genomes of the four Podoviridae phages were fully sequenced and found to be almost identical to each other and to those of two previously characterized Y. pestis phages Yepe2 and φA1122. However, despite their genomic homogeneity, they varied in their ability to lyse Y. pestis and Y. pseudotuberculosis strains. The five phages were combined to yield a “phage cocktail” (tentatively designated “YPP-100”) capable of lysing the 59 Y. pestis strains in our collection. YPP-100 was examined for its ability to decontaminate three different hard surfaces (glass, gypsum board and stainless steel) experimentally contaminated with a mixture of three genetically diverse Y. pestis strains CO92, KIM and 1670G. Five minutes of exposure to YPP-100 preparations containing phage concentrations of ca. 109, 108 and 107 PFU/mL completely eliminated all viable Y. pestis cells from all three surfaces, but a few viable cells were recovered from the stainless steel coupons treated with YPP-100 diluted to contain ca. 106 PFU/mL. However, even that highly diluted preparation significantly (p = < 0.05) reduced Y. pestis levels by ≥ 99.97%. Our data support the idea that Y. pestis phages may be useful for decontaminating various hard surfaces naturally- or intentionally-contaminated with Y. pestis.
doi:10.4161/bact.22240
PMCID: PMC3530526  PMID: 23275868
bacteriophage; phage; Yersinia pestis; surface decontamination
2.  Recent Clonal Origin of Cholera in Haiti 
Emerging Infectious Diseases  2011;17(4):699-701.
Altered El Tor Vibrio cholerae O1, with classical cholera toxin B gene, was isolated from 16 patients with severe diarrhea at St. Mark’s Hospital, Arbonite, Haiti, <3 weeks after onset of the current cholera epidemic. Variable-number tandem-repeat typing of 187 isolates showed minimal diversity, consistent with a point source for the epidemic.
doi:10.3201/eid1704.101973
PMCID: PMC3377427  PMID: 21470464
Cholera; Haiti; Vibrio cholerae; bacteria; variable-number tandem-repeat; molecular epidemiology; clonal origin; expedited; dispatch
3.  Enumeration of bacteriophage particles 
Bacteriophage  2011;1(2):86-93.
Bacteriophages are increasingly being utilized and considered for various practical applications, ranging from decontaminating foods and inanimate surfaces to human therapy; therefore, it is important to determine their concentrations quickly and reliably. Traditional plaque assay (PA) is the current “gold standard” for quantitating phage titers. However, it requires at least 18 h before results are obtained, and they may be significantly influenced by various factors. Therefore, two alternative assays based on the quantitative real-time polymerase chain reaction (QPCR) and NanoSight Limited (NS) technologies were recently proposed for enumerating phage particles. The present study compared the three approaches' abilities to quantitate Listeria monocytogenes-, Escherichia coli O157:H7- and Yersinia pestis-specific lytic phages quickly and reproducibly. The average coefficient of variation (CVS) of the PA method including all three phages was 0.15. The reproducibility of the PA method decreased dramatically when multiple investigators performed the assays, and mean differences of as much as 0.33 log were observed. The QPC R method required costly equipment and the synthesis of phage-specific oligonucleotide primers, but it determined phage concentrations faster (within about 4 h) and more precisely than did PA (CVS = 0.13). NS technology required costly equipment, was less precise (CVS = 0.28) than the PA and QPCR methods, and only worked when the phages were suspended in clear medium. However, it provided results within 5 min. After the overall correlation is established with the PA method, either of the two assays may be useful for quickly and reproducibly determining phage concentrations.
doi:10.4161/bact.1.2.15456
PMCID: PMC3278645  PMID: 22334864
bacteriophage; phage; plaque assays; phage titer
4.  Characterization of pPCP1 Plasmids in Yersinia pestis Strains Isolated from the Former Soviet Union 
Complete sequences of 9.5-kb pPCP1 plasmids in three Yersinia pestis strains from the former Soviet Union (FSU) were determined and compared with those of pPCP1 plasmids in three well-characterized, non-FSU Y. pestis strains (KIM, CO92, and 91001). Two of the FSU plasmids were from strains C2614 and C2944, isolated from plague foci in Russia, and one plasmid was from strain C790 from Kyrgyzstan. Sequence analyses identified four sequence types among the six plasmids. The pPCP1 plasmids in the FSU strains were most genetically related to the pPCP1 plasmid in the KIM strain and least related to the pPCP1 plasmid in Y. pestis 91001. The FSU strains generally had larger pPCP1 plasmid copy numbers compared to strain CO92. Expression of the plasmid's pla gene was significantly (P ≤ .05) higher in strain C2944 than in strain CO92. Given pla's role in Y. pestis virulence, this difference may have important implications for the strain's virulence.
doi:10.1155/2010/760819
PMCID: PMC3010648  PMID: 21197443
5.  RNA Colony Blot Hybridization Method for Enumeration of Culturable Vibrio cholerae and Vibrio mimicus Bacteria▿  
Applied and Environmental Microbiology  2009;75(17):5439-5444.
A species-specific RNA colony blot hybridization protocol was developed for enumeration of culturable Vibrio cholerae and Vibrio mimicus bacteria in environmental water samples. Bacterial colonies on selective or nonselective plates were lysed by sodium dodecyl sulfate, and the lysates were immobilized on nylon membranes. A fluorescently labeled oligonucleotide probe targeting a phylogenetic signature sequence of 16S rRNA of V. cholerae and V. mimicus was hybridized to rRNA molecules immobilized on the nylon colony lift blots. The protocol produced strong positive signals for all colonies of the 15 diverse V. cholerae-V. mimicus strains tested, indicating 100% sensitivity of the probe for the targeted species. For visible colonies of 10 nontarget species, the specificity of the probe was calculated to be 90% because of a weak positive signal produced by Grimontia (Vibrio) hollisae, a marine bacterium. When both the sensitivity and specificity of the assay were evaluated using lake water samples amended with a bioluminescent V. cholerae strain, no false-negative or false-positive results were found, indicating 100% sensitivity and specificity for culturable bacterial populations in freshwater samples when G. hollisae was not present. When the protocol was applied to laboratory microcosms containing V. cholerae attached to live copepods, copepods were found to carry approximately 10,000 to 50,000 CFU of V. cholerae per copepod. The protocol was also used to analyze pond water samples collected in an area of cholera endemicity in Bangladesh over a 9-month period. Water samples collected from six ponds demonstrated a peak in abundance of total culturable V. cholerae bacteria 1 to 2 months prior to observed increases in pathogenic V. cholerae and in clinical cases recorded by the area health clinic. The method provides a highly specific and sensitive tool for monitoring the dynamics of V. cholerae in the environment. The RNA blot hybridization protocol can also be applied to detection of other gram-negative bacteria for taxon-specific enumeration.
doi:10.1128/AEM.02007-08
PMCID: PMC2737924  PMID: 19561182
6.  c-di-GMP (3′-5′-Cyclic Diguanylic Acid) Inhibits Staphylococcus aureus Cell-Cell Interactions and Biofilm Formation 
Staphylococcus aureus is an important pathogen of humans and animals, and antibiotic resistance is a public health concern. Biofilm formation is essential in virulence and pathogenesis, and the ability to resist antibiotic treatment results in difficult-to-treat and persistent infections. As such, novel antimicrobial approaches are of great interest to the scientific, medical, and agriculture communities. We recently proposed that modulating levels of the cyclic dinucleotide signaling molecule, c-di-GMP (cyclic diguanylate [3′,5′-cyclic diguanylic acid], cGpGp), has utility in regulating phenotypes of prokaryotes. We report that extracellular c-di-GMP shows activity against human clinical and bovine intramammary mastitis isolates of S. aureus, including methicillin-resistant S. aureus (MRSA) isolates. We show that chemically synthesized c-di-GMP is soluble and stable in water and physiological saline and stable following boiling and exposure to acid and alkali. Treatment of S. aureus with extracellular c-di-GMP inhibited cell-to-cell (intercellular) adhesive interactions in liquid medium and reduced (>50%) biofilm formation in human and bovine isolates compared to untreated controls. c-di-GMP inhibited the adherence of S. aureus to human epithelial HeLa cells. The cyclic nucleotide analogs cyclic GMP and cyclic AMP had a lesser inhibitory effect on biofilms, while 5′-GMP had no major effect. We propose that cyclic dinucleotides such as c-di-GMP, used either alone or in combination with other antimicrobial agents, represent a novel and attractive approach in the development of intervention strategies for the prevention of biofilms and the control and treatment of infection.
doi:10.1128/AAC.49.3.1029-1038.2005
PMCID: PMC549248  PMID: 15728899
7.  High-Frequency Rugose Exopolysaccharide Production by Vibrio cholerae 
Applied and Environmental Microbiology  2002;68(11):5773-5778.
Vibrio cholerae can shift to a “rugose” phenotype, thereby producing copious exopolysaccharide (EPS), which promotes its environmental survival and persistence. We report conditions that promote high-frequency rugose EPS production (HFRP), whereby cells switch at high frequency (up to 80%) to rugose EPS production. HFRP appeared to be more common in clinical strains, as HFRP was found in 6 of 19 clinical strains (32%) (including classical, El Tor, and non-O1 strains) but in only 1 of 16 environmental strains (6%). Differences were found between strains in rugose colony morphology, conditions promoting HFRP, the frequency of rugose-to-smooth (R-S) cell reversion, and biofilm formation. We propose that rugose EPS and HFRP provide an evolutionary and adaptive advantage to specific epidemic V. cholerae strains for increased persistence in the environment.
doi:10.1128/AEM.68.11.5773-5778.2002
PMCID: PMC129946  PMID: 12406780

Results 1-7 (7)