Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Specialization for underwater hearing by the tympanic middle ear of the turtle, Trachemys scripta elegans 
Turtles, like other amphibious animals, face a trade-off between terrestrial and aquatic hearing. We used laser vibrometry and auditory brainstem responses to measure their sensitivity to vibration stimuli and to airborne versus underwater sound. Turtles are most sensitive to sound underwater, and their sensitivity depends on the large middle ear, which has a compliant tympanic disc attached to the columella. Behind the disc, the middle ear is a large air-filled cavity with a volume of approximately 0.5 ml and a resonance frequency of approximately 500 Hz underwater. Laser vibrometry measurements underwater showed peak vibrations at 500–600 Hz with a maximum of 300 µm s−1 Pa−1, approximately 100 times more than the surrounding water. In air, the auditory brainstem response audiogram showed a best sensitivity to sound of 300–500 Hz. Audiograms before and after removing the skin covering reveal that the cartilaginous tympanic disc shows unchanged sensitivity, indicating that the tympanic disc, and not the overlying skin, is the key sound receiver. If air and water thresholds are compared in terms of sound intensity, thresholds in water are approximately 20–30 dB lower than in air. Therefore, this tympanic ear is specialized for underwater hearing, most probably because sound-induced pulsations of the air in the middle ear cavity drive the tympanic disc.
PMCID: PMC3367789  PMID: 22438494
underwater sound; evolution; cochlea; auditory brainstem response
2.  Auditory frequency generalization in the goldfish (Carassius auratus)1 
Auditory frequency generalization in the goldfish was studied at five points within the best hearing range through the use of classical respiratory conditioning. Each experimental group received single-stimulus conditioning sessions at one of five stimulus frequencies (100, 200, 400, 800, and 1600 Hz), and were subsequently tested for generalization at eight neighboring frequencies. All stimuli were presented 30 db above absolute threshold. Significant generalization decrements were found for all subjects. For the subjects conditioned in the range between 100 and 800 Hz, a nearly complete failure to generalize was found at one octave above and below the training frequency. The subjects conditioned at 1600 Hz produced relatively more flat gradients between 900 and 2000 Hz. The widths of the generalization gradients, expressed in Hz, increased as a power function of frequency with a slope greater than one.
PMCID: PMC1333747  PMID: 16811481
3.  γ-Aminobutyric acid is a neurotransmitter in the auditory pathway of oyster toadfish, Opsanus tau 
Hearing research  2010;262(1-2):45-55.
Binaural computations involving the convergence of excitatory and inhibitory inputs have been proposed to explain directional sharpening and frequency tuning documented in the brainstem of a teleost fish, the oyster toadfish (Opsanus tau). To assess the presence of inhibitory neurons in the ascending auditory circuit, we used a monoclonal antibody to GABA to evaluate immunoreactivity at three levels of the circuit: the first order descending octaval nucleus (DON), the secondary octaval population (dorsal division), and the midbrain torus semicircularis. We observed a subset of immunoreactive (IR) cells and puncta distributed throughout the neuropil at all three locations. To assess whether contralateral inhibition is present, fluorescent dextran crystals were inserted into dorsal DON to fill contralateral, commissural inputs retrogradely prior to GABA immunohistochemistry. GABA-IR somata and puncta co-occurred with retrogradely filled, GABA-negative auditory projection cells. GABA-IR projection cells were more common in the dorsolateral DON than in the dorsomedial DON, but GABA-IR puncta were common in both dosolateral and dorsomedial divisions. Our findings demonstrate that GABA is present in the ascending auditory circuit in the brainstem of the toadfish, indicating that GABA-mediated inhibition participates in shaping auditory response characteristics in a teleost fish as in other vertebrates.
PMCID: PMC2878777  PMID: 20097279
auditory processing; descending octaval nucleus; inhibition; directional hearing; secondary octaval nucleus
4.  Spectral contrasts underlying auditory stream segregation in goldfish (Carassius auratus)  
This study investigates the effects of spectral separation of sounds on the ability of goldfish to acquire independent information about two simultaneous complex sources. Goldfish were conditioned to a complex sound made up of two sets of repeated acoustic pulses: a high-frequency pulse with a spectral envelope centered at 625 Hz, and a low-frequency pulse type centered at 240, 305, 390, or 500 Hz. The pulses were presented with each pulse type alternating with an overall pulse repetition rate of 40 pulses per second (pps), and a 20-pps rate between identical pulses. Two control groups were conditioned to the 625-Hz pulse alone, repeated at 40 and 20 pps, respectively. All groups were tested for generalization to the 625-Hz pulse repeated alone at several rates. If the two pulse types in the complex resulted in independent auditory streams, the animals were expected to generalize to the 625-Hz pulse trains as if they were repeated at 20 pps during conditioning. It was hypothesized that as the center frequency of the low-frequency pulse approached that of the 625-Hz pulse, the alternating trains would be perceived as a single auditory stream with a repetition rate of 40 pps. The group conditioned to alternating 625- and 240-Hz pulses generalized least, with maximum generalization at 20 Hz, suggesting that the animals formed at least one perceptual stream with a repetition rate of 20 pps. The other alternating pulse groups generalized to intermediate degrees. Goldfish can segregate at least one "auditory stream" from a complex mixture of sources. Segregation can be based on spectral envelope and grows more robust with growing spectral separation between the simultaneous sources. Auditory stream segregation and auditory scene analysis are shared among human listeners, European starlings, and goldfish, and may be primitive characteristics of the vertebrate sense of hearing.
PMCID: PMC2504535  PMID: 11545140
goldfish; auditory stream segregation; spectral separation

Results 1-4 (4)