PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Regulating the production of (R)-3-hydroxybutyrate in Escherichia coli by N or P limitation 
The chiral compound (R)-3-hydroxybutyrate (3HB) is naturally produced by many wild type organisms as the monomer for polyhydroxybutyrate (PHB). Both compounds are commercially valuable and co-polymeric polyhydroxyalkanoates have been used e.g., in medical applications for skin grafting and as components in pharmaceuticals. In this paper we investigate cultivation strategies for production of 3HB in the previously described E. coli strain AF1000 pJBGT3RX. This strain produces extracellular 3HB by expression of two genes from the PHB pathway of Halomonas boliviensis. H. boliviensis is a newly isolated halophile that forms PHB as a storage compound during carbon excess and simultaneous limitation of another nutrient like nitrogen and phosphorous. We hypothesize that a similar approach can be used to control the flux from acetyl-CoA to 3HB also in E. coli; decreasing the flux to biomass and favoring the pathway to the product. We employed ammonium- or phosphate-limited fed-batch processes for comparison of the productivity at different nutrient limitation or starvation conditions. The feed rate was shown to affect the rate of glucose consumption, respiration, 3HB, and acetic acid production, although the proportions between them were more difficult to affect. The highest 3HB volumetric productivity, 1.5 g L−1 h−1, was seen for phosphate-limitation.
doi:10.3389/fmicb.2015.00844
PMCID: PMC4541288  PMID: 26347729
E. coli; 3-hydroxybutyrate (3HB); polyhydroxybutyrate (PHB); fed-batch; phosphate; ammonium; limitation; depletion
2.  Production of poly(3-hydroxybutyrate) by Halomonas boliviensis in an air-lift reactor 
Background
Microbial polyesters, also known as polyhydroxyalkanoates (PHAs), closely resemble physical and mechanical features of petroleum derived plastics. Recombinant Escherichia coli strains are being used in industrial production of PHAs in Stirred Tank Bioreactors (STRs). However, use of Air-Lift Reactors (ALRs) has been known to offer numerous technical operating options over STRs, and as such has been successfully implemented in many bioprocesses. Halomonas boliviensis is a halophilic bacterium that is known to assimilate various carbohydrates and convert them into a particular type of PHA known as poly(3-hydroxybutyrate) (PHB). Owing to this capability, it has been used to synthesize the polyester using hydrolysates of starch or wheat bran in stirred tank bioreactors.
Results
This research article firstly describes the production of PHB in shake flasks by H. boliviensis using different combinations of carbohydrates and partially hydrolyzed starch as carbon sources. The highest PHB yields, between 56 and 61 % (wt.), were achieved when either starch hydrolysate or a mixture of glucose and xylose were used as carbon sources. The starch hydrolysate obtained in this study was then used as carbon source in an ALR. The largest amount of PHB, 41 % (wt.), was attained after 24 hrs of cultivation during which maltose in the hydrolysate was assimilated more rapidly than glucose during active cell growth; however, the rate of assimilation of both the carbohydrates was found to be similar during synthesis of PHB. An incomplete pentose phosphate pathway, which lacks 6-phosphogluconate dehydrogenase, was deduced from the genome sequence of this bacterium and may result in the characteristic assimilation of glucose and maltose by the cells.
Conclusions
This study showed that the production of PHB by H. boliviensis using cheap substrates such as starch hydrolysate in a simple production system involving an ALR is feasible. Both maltose and glucose in the hydrolysate induce cell growth and PHB synthesis; most likely the cells balance adequately CoA and NAD(P)H during the assimilation of these carbohydrates. The combination of cheap substrates, simple production systems and the use of non-strict sterile conditions by the halophile H. boliviensis are desirable traits for large scale production of PHB, and should lead to a competitive bioprocess.
Electronic supplementary material
The online version of this article (doi:10.1186/s40709-015-0031-6) contains supplementary material, which is available to authorized users.
doi:10.1186/s40709-015-0031-6
PMCID: PMC4522284  PMID: 26236692
PHB production; Air-lift bioreactor; Starch hydrolysate; Halophile; Halomonas boliviensis
3.  Cultivation strategies for production of (R)-3-hydroxybutyric acid from simultaneous consumption of glucose, xylose and arabinose by Escherichia coli 
Background
Lignocellulosic waste is a desirable biomass for use in second generation biorefineries. Up to 40% of its sugar content consist of pentoses, which organisms either take up sequentially after glucose depletion, or not at all. A previously described Escherichia coli strain, PPA652ara, capable of simultaneous consumption of glucose, xylose and arabinose was in the present work utilized for production of (R)-3-hydroxybutyric acid (3HB) from a mixture of glucose, xylose and arabinose.
Results
The Halomonas boliviensis genes for 3HB production were for the first time cloned into E. coli PPA652ara, leading to product secretion directly into the medium. Process design was based on comparisons of batch, fed-batch and continuous cultivation, where both excess and limitation of the carbon mixture was studied. Carbon limitation resulted in low specific productivity of 3HB (<2 mg g−1 h−1) compared to carbon excess (25 mg g−1 h−1), but the yield of 3HB/cell dry weight (Y3HB/CDW) was very low (0.06 g g−1) during excess. Nitrogen-exhausted conditions could be used to sustain a high specific productivity (31 mg g−1 h−1) and to increase the yield of 3HB/cell dry weight to 1.38 g g−1. Nitrogen-limited fed-batch process design led to further increased specific productivity (38 mg g−1 h−1) but also to additional cell growth (Y3HB/CDW = 0.16 g g−1). Strain PPA652ara did under all processing conditions simultaneously consume glucose, xylose and arabinose, which was not the case for a reference wild type E. coli, which also gave a higher carbon flux to acetic acid.
Conclusions
It was demonstrated that by using E. coli PPA652ara, it was possible to design a production process for 3HB from a mixture of glucose, xylose and arabinose where all sugars were consumed. An industrial 3HB production process is proposed to be divided into a growth and a production phase, and nitrogen depletion/limitation is a potential strategy to maximize the yield of 3HB/CDW in the latter. The specific productivity of 3HB reported here from glucose, xylose and arabinose by E. coli is further comparable to the current state of the art for production from glucose sources.
doi:10.1186/s12934-015-0236-2
PMCID: PMC4405896  PMID: 25889969
Escherichia coli; 3-Hydroxybutyric acid; 3HB; Simultaneous uptake; Lignocellulose; Production process; Nitrogen limitation
4.  Polyester production by halophilic and halotolerant bacterial strains obtained from mangrove soil samples located in Northern Vietnam 
MicrobiologyOpen  2012;1(4):395-406.
This research article reports halophilic and halotolerant bacteria isolated from mangrove forests located in Northern Vietnam. Several of these bacteria were able to synthesize polyhydroxyalkanoates (PHAs). PHAs are polyesters stored by microorganisms under the presence of considerable amounts of a carbon source and deficiency of other essential nutrient such as nitrogen or phosphorous. Mangrove forests in Northern Vietnam are saline coastal habitats that have not been microbiologically studied. Mangrove ecosystems are, in general, rich in organic matter, but deficient in nutrients such as nitrogen and phosphorus. We have found about 100 microorganisms that have adapted to mangrove forests by accumulating PHAs. The production of polyesters might therefore be an integral part of the carbon cycle in mangrove forests. Three of the strains (ND153, ND97, and QN194) isolated from the Vietnamese forests were identified as Bacillus species, while other five strains (QN187, ND199, ND218, ND240, and QN271) were phylogenetically close related to the α-proteobacterium Yangia pacifica. These strains were found to accumulate PHAs in noticeable amounts. Polymer inclusions and chemical structure were studied by transmission electron microscopy and proton nuclear magnetic resonance (NMR) spectroscopy analyses, respectively. Strains ND153, ND97, QN194, QN187, ND240, and QN271 synthesized poly(3-hydroxybutyrate) (PHB) from glucose, whereas strains ND199 and ND218 synthesized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from this carbohydrate. With the exception of strain QN194, the strains accumulated PHBV when a combination of glucose and propionate was included in the culture medium. The polymer yields and cell growth reached by one Bacillus isolate, strain ND153, and one Gram-negative bacterium, strain QN271, were high and worth to be researched further. For experiments performed in shake flasks, strain ND153 reached a maximum PHBV yield of 71 wt% and a cell dry weight (CDW) of 3.6 g/L while strain QN271 attained a maximum PHB yield of 48 wt% and a CDW of 5.1 g/L. Both strain ND153 and strain QN271 may only represent a case in point that exemplifies of the potential that mangrove forests possess for the discovery of novel halophilic and halotolerant microorganisms able to synthesize different types of biopolyesters.
doi:10.1002/mbo3.44
PMCID: PMC3535385  PMID: 23233461
Biopolyesters; halophilic bacteria; halotolerant bacteria; mangrove forests; polyhydroxyalkanoates
5.  Evolutionary patterns of carbohydrate transport and metabolism in Halomonas boliviensis as derived from its genome sequence: influences on polyester production 
Aquatic Biosystems  2012;8:9.
Background
Halomonas boliviensis is a halophilic bacterium that is included in the γ-Proteobacteria sub-group, and is able to assimilate different types of carbohydrates. H. boliviensis is also able to produce poly(3-hydroxybutyrate) (PHB) in high yields using glucose as the carbon precursor. Accumulation of PHB by microorganisms is induced by excess of intracellular NADH.
The genome sequences and organization in microorganisms should be the result of evolution and adaptation influenced by mutation, gene duplication, horizontal gen transfer (HGT) and recombination. Furthermore, the nearly neutral theory of evolution sustains that genetic modification of DNA could be neutral or selected, albeit most mutations should be at the border between neutrality and selection, i.e. slightly deleterious base substitutions in DNA are followed by a slightly advantageous substitutions.
Results
This article reports the genome sequence of H. boliviensis. The chromosome size of H. boliviensis was 4 119 979 bp, and contained 3 863 genes. A total of 160 genes of H. boliviensis were related to carbohydrate transport and metabolism, and were organized as: 70 genes for metabolism of carbohydrates; 47 genes for ABC transport systems and 43 genes for TRAP-type C4-dicarboxylate transport systems. Protein sequences of H. boliviensis related to carbohydrate transport and metabolism were selected from clusters of orthologous proteins (COGs). Similar proteins derived from the genome sequences of other 41 archaea and 59 bacteria were used as reference. We found that most of the 160 genes in H. boliviensis, c.a. 44%, were obtained from other bacteria by horizontal gene transfer, while 13% of the genes were acquired from haloarchaea and thermophilic archaea, only 34% of the genes evolved among Proteobacteria and the remaining genes encoded proteins that did not cluster with any of the proteins obtained from the reference strains. Furthermore, the diversity of the enzymes derived from these genes led to polymorphism in glycolysis and gluconeogenesis. We found further that an optimum ratio of glucose and sucrose in the culture medium of H. boliviensis favored cell growth and PHB production.
Conclusions
Results obtained in this article depict that most genetic modifications and enzyme polymorphism in the genome of H. boliviensis were mainly influenced by HGT rather than nearly neutral mutations. Molecular adaptation and evolution experienced by H. boliviensis were also a response to environmental conditions such as the type and amount of carbohydrates in its ecological niche. Consequently, the genome evolution of H. boliviensis showed to be strongly influenced by the type of microorganisms, genetic interaction among microbial species and its environment. Such trend should also be experienced by other prokaryotes. A system for PHB production by H. boliviensis that takes into account the evolutionary adaptation of this bacterium to the assimilation of combinations of carbohydrates suggests the feasibility of a bioprocess economically viable and environmentally friendly.
doi:10.1186/2046-9063-8-9
PMCID: PMC3384467  PMID: 22510370
Halomonas boliviensis; Halophilic bacterium; Halomonas; Halomonadaceae; Biopolyesters; Polyhydroxyalkanoates; Genome evolution; Population genetics

Results 1-5 (5)