PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-14 (14)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  An improved genetic system for bioengineering buoyant gas vesicle nanoparticles from Haloarchaea 
BMC Biotechnology  2013;13:112.
Background
Gas vesicles are hollow, buoyant organelles bounded by a thin and extremely stable protein membrane. They are coded by a cluster of gvp genes in the halophilic archaeon, Halobacterium sp. NRC-1. Using an expression vector containing the entire gvp gene cluster, gas vesicle nanoparticles (GVNPs) have been successfully bioengineered for antigen display by constructing gene fusions between the gvpC gene and coding sequences from bacterial and viral pathogens.
Results
To improve and streamline the genetic system for bioengineering of GVNPs, we first constructed a strain of Halobacterium sp. NRC-1 deleted solely for the gvpC gene. The deleted strain contained smaller, more spindle-shaped nanoparticles observable by transmission electron microscopy, confirming a shape-determining role for GvpC in gas vesicle biogenesis. Next, we constructed expression plasmids containing N-terminal coding portions or the complete gvpC gene. After introducing the expression plasmids into the Halobacterium sp. NRC-1 ΔgvpC strain, GvpC protein and variants were localized to the GVNPs by Western blotting analysis and their effects on increasing the size and shape of nanoparticles established by electron microscopy. Finally, a synthetic gene coding for Gaussia princeps luciferase was fused to the gvpC gene fragments on expression plasmids, resulting in an enzymatically active GvpC-luciferase fusion protein bound to the buoyant nanoparticles from Halobacterium.
Conclusion
GvpC protein and its N-terminal fragments expressed from plasmid constructs complemented a Halobacterium sp. NRC-1 ΔgvpC strain and bound to buoyant GVNPs. Fusion of the luciferase reporter gene from Gaussia princeps to the gvpC gene derivatives in expression plasmids produced GVNPs with enzymatically active luciferase bound. These results establish a significantly improved genetic system for displaying foreign proteins on Halobacterium gas vesicles and extend the bioengineering potential of these novel nanoparticles to catalytically active enzymes.
doi:10.1186/1472-6750-13-112
PMCID: PMC3878110  PMID: 24359319
Vaccine; Halophiles; Archaea; Luciferase
2.  Genome-Wide Responses of the Model Archaeon Halobacterium sp. Strain NRC-1 to Oxygen Limitation 
Journal of Bacteriology  2012;194(20):5530-5537.
As part of a comprehensive postgenomic investigation of the model archaeon Halobacterium sp. strain NRC-1, we used whole-genome DNA microarrays to compare transcriptional profiles of cells grown under anaerobic or aerobic conditions. When anaerobic growth supported by arginine fermentation was compared to aerobic growth, genes for arginine fermentation (arc) and anaerobic respiration (dms), using trimethylamine N-oxide (TMAO) as the terminal electron acceptor, were highly upregulated, as was the bop gene, required for phototrophic growth. When arginine fermentation was compared to anaerobic respiration with TMAO, the arc and dms genes were both induced with arginine, while TMAO induced the bop gene and major gas vesicle protein (gvpAC) genes specifying buoyant gas vesicles. Anaerobic conditions with either TMAO or arginine also upregulated the cba genes, encoding one of three cytochrome oxidases. In-frame deletion of two COG3413 family regulatory genes, bat and dmsR, showed downregulation of the bop gene cluster and loss of purple membrane synthesis and downregulation of the dms operon and loss of anaerobic respiration capability, respectively. Bioinformatic analysis identified additional regulatory and sensor genes that are likely involved in the full range of cellular responses to oxygen limitation. Our results show that the Halobacterium sp. has evolved a carefully orchestrated set of responses to oxygen limitation. As conditions become more reducing, cells progressively increase buoyancy, as well as capabilities for phototrophy, scavenging of molecular oxygen, anaerobic respiration, and fermentation.
doi:10.1128/JB.01153-12
PMCID: PMC3458682  PMID: 22865851
3.  Amino Acid Substitutions in Cold-Adapted Proteins from Halorubrum lacusprofundi, an Extremely Halophilic Microbe from Antarctica 
PLoS ONE  2013;8(3):e58587.
The halophilic Archaeon Halorubrum lacusprofundi, isolated from the perennially cold and hypersaline Deep Lake in Antarctica, was recently sequenced and compared to 12 Haloarchaea from temperate climates by comparative genomics. Amino acid substitutions for 604 H. lacusprofundi proteins belonging to conserved haloarchaeal orthologous groups (cHOGs) were determined and found to occur at 7.85% of positions invariant in proteins from mesophilic Haloarchaea. The following substitutions were observed most frequently: (a) glutamic acid with aspartic acid or alanine; (b) small polar residues with other small polar or non-polar amino acids; (c) small non-polar residues with other small non-polar residues; (d) aromatic residues, especially tryptophan, with other aromatic residues; and (e) some larger polar residues with other similar residues. Amino acid substitutions for a cold-active H. lacusprofundi β-galactosidase were then examined in the context of a homology modeled structure at residues invariant in homologous enzymes from mesophilic Haloarchaea. Similar substitutions were observed as in the genome-wide approach, with the surface accessible regions of β-galactosidase displaying reduced acidity and increased hydrophobicity, and internal regions displaying mainly subtle changes among smaller non-polar and polar residues. These findings are consistent with H. lacusprofundi proteins displaying amino acid substitutions that increase structural flexibility and protein function at low temperature. We discuss the likely mechanisms of protein adaptation to a cold, hypersaline environment on Earth, with possible relevance to life elsewhere.
doi:10.1371/journal.pone.0058587
PMCID: PMC3594186  PMID: 23536799
4.  Cloning, overexpression, purification, and characterization of a polyextremophilic β-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi 
BMC Biotechnology  2013;13:3.
Background
Halorubrum lacusprofundi is a cold-adapted halophilic archaeon isolated from Deep Lake, a perennially cold and hypersaline lake in Antarctica. Its genome sequencing project was recently completed, providing access to many genes predicted to encode polyextremophilic enzymes active in both extremely high salinity and cold temperatures.
Results
Analysis of the genome sequence of H. lacusprofundi showed a gene cluster for carbohydrate utilization containing a glycoside hydrolase family 42 β-galactosidase gene, named bga. In order to study the biochemical properties of the β-galactosidase enzyme, the bga gene was PCR amplified, cloned, and expressed in the genetically tractable haloarchaeon Halobacterium sp. NRC-1 under the control of a cold shock protein (cspD2) gene promoter. The recombinant β-galactosidase protein was produced at 20-fold higher levels compared to H. lacusprofundi, purified using gel filtration and hydrophobic interaction chromatography, and identified by SDS-PAGE, LC-MS/MS, and ONPG hydrolysis activity. The purified enzyme was found to be active over a wide temperature range (−5 to 60°C) with an optimum of 50°C, and 10% of its maximum activity at 4°C. The enzyme also exhibited extremely halophilic character, with maximal activity in either 4 M NaCl or KCl. The polyextremophilic β-galactosidase was also stable and active in 10–20% alcohol-aqueous solutions, containing methanol, ethanol, n-butanol, or isoamyl alcohol.
Conclusion
The H. lacusprofundi β-galactosidase is a polyextremophilic enzyme active in high salt concentrations and low and high temperature. The enzyme is also active in aqueous-organic mixed solvents, with potential applications in synthetic chemistry. H. lacuprofundi proteins represent a significant biotechnology resource and for developing insights into enzyme catalysis under water limiting conditions. This study provides a system for better understanding how H. lacusprofundi is successful in a perennially cold, hypersaline environment, with relevance to astrobiology.
doi:10.1186/1472-6750-13-3
PMCID: PMC3556326  PMID: 23320757
Polyextremophiles; Extremozymes; Protein stability; Halophiles; Psychrophiles; Biofuels
5.  The core and unique proteins of haloarchaea 
BMC Genomics  2012;13:39.
Background
Since the first genome of a halophilic archaeon was sequenced in 2000, biologists have been advancing the understanding of genomic characteristics that allow for survival in the harsh natural environments of these organisms. An increase in protein acidity and GC-bias in the genome have been implicated as factors in tolerance to extreme salinity, desiccation, and high solar radiation. However, few previous attempts have been made to identify novel genes that would permit survival in such extreme conditions.
Results
With the recent release of several new complete haloarchaeal genome sequences, we have conducted a comprehensive comparative genomic analysis focusing on the identification of unique haloarchaeal conserved proteins that likely play key roles in environmental adaptation. Using bioinformatic methods, we have clustered 31,312 predicted proteins from nine haloarchaeal genomes into 4,455 haloarchaeal orthologous groups (HOGs). We assigned likely functions by association with established COG and KOG databases in NCBI. After identifying homologs in four additional haloarchaeal genomes, we determined that there were 784 core haloarchaeal protein clusters (cHOGs), of which 83 clusters were found primarily in haloarchaea. Further analysis found that 55 clusters were truly unique (tucHOGs) to haloarchaea and qualify as signature proteins while 28 were nearly unique (nucHOGs), the vast majority of which were coded for on the haloarchaeal chromosomes. Of the signature proteins, only one example with any predicted function, Ral, involved in desiccation/radiation tolerance in Halobacterium sp. NRC-1, was identified. Among the core clusters, 33% was predicted to function in metabolism, 25% in information transfer and storage, 10% in cell processes and signaling, and 22% belong to poorly characterized or general function groups.
Conclusion
Our studies have established conserved groups of nearly 800 protein clusters present in all haloarchaea, with a subset of 55 which are predicted to be accessory proteins that may be critical or essential for success in an extreme environment. These studies support core and signature genes and proteins as valuable concepts for understanding phylogenetic and phenotypic characteristics of coherent groups of organisms.
doi:10.1186/1471-2164-13-39
PMCID: PMC3287961  PMID: 22272718
6.  HaloWeb: the haloarchaeal genomes database 
Saline Systems  2010;6:12.
Background
Complete genome sequencing together with post-genomic studies provide the opportunity for a comprehensive 'systems biology' understanding of model organisms. For maximum effectiveness, an integrated database containing genomic, transcriptomic, and proteomic data is necessary.
Description
To improve data access and facilitate functional genomic studies on haloarchaea in our laboratory, a dedicated database and website, named HaloWeb, was developed. It incorporates all finished and publicly released haloarchaeal genomes, including gene, protein and RNA sequences and annotation data, as well as other features such as insertion element sequences. The HaloWeb database was designed for easy data access and mining, and includes tools for tasks such as genome map generation, sequence extraction, and sequence editing. Popular resources at other sites, e.g., NCBI PubMed and BLAST, COG and KOG protein clusters, KEGG pathways, and GTOP structures were dynamically linked. The HaloWeb site is located at http://halo4.umbi.umd.edu, and at a mirror site, http://halo5.umbi.umd.edu, with all public genomic data and NCBI, KEGG, and GTOP links available for use by the academic community. The database is curated and updated on a regular basis.
Conclusions
The HaloWeb site includes all completely sequenced haloarchaeal genomes from public databases. It is currently being used as a tool for comparative genomics, including analysis of gene and genome structure, organization, and function. The database and website are up-to-date resources for researchers worldwide.
doi:10.1186/1746-1448-6-12
PMCID: PMC3023673  PMID: 21192823
7.  Translation of Henrich Klebahn's 'Damaging agents of the klippfish - a contribution to the knowledge of the salt-loving organisms' 
Saline Systems  2010;6:7.
Background
Henrich Klebahn was a German linguist, mycologist and phytopathologist, who was known as Dr. Dr. h. c. Henrich Klebahn, Hauptcustos a. D., Honorarprofessor an der Hanischen Universität. He was born February 20, 1859 in Bremen, and died October 5, 1942 in Hamburg. He taught linguistics from 1885-1899, studied Natural Science at the Universities of Jena and Berlin (1881) and received his PhD from the University of Jena. In 1899, he was appointed scientific assistant at the Hamburg botanical garden, where he worked until 1905. From 1905 to 1930, he was at the agricultural institute of Bromberg. In 1921, he was named honorary professor and lecturer in cryptogams and soil biology at the Institut für Allgemeine Botanik where he taught until 1934. He is well known for his work on gas vesicles and halophiles, among other topics.
This re-print of 'Die Schädlinge des Klippfisches. Ein Beitrag zur Kenntnis der salzliebenden Organismen. Von H. Klebahn. Mit zwei Tafeln und vier Abbildungen im Text.' was originally published in 1919 in the Jahrbuch der Hamb. Wissensch. Anstaltes. XXXVI. Beiheft pages 11-69, by Latcke & Waltt, E. H. Buchdrucker. The translators have tried to remain faithful to the contents and to the original sense of the article by minimizing modifications.
Results
The original paper reported the conclusions of a 3 year long study of the microbes causing damage to the fish industry as well as a summation of work on the subject up until 1919. The findings were that the causative agents were fungi and other microbes, the chief of which was a red, Gram-negative rod-shaped bacillus, Bacillus halobius ruber, that formed pale reddish colonies and was found to oscillate, but after extensive testing, was found not possess flagella. The initial appearance of "a shiny corpuscle" at the ends of cells was determined not to be spores; rather that it was the "result of the coherence of the light beams due to a total reflection of the light in the optically denser little rods". The cells were osmotically sensitive to the addition of water. In addition, a Gram-negative, red Sarcina morrhuae that appeared pinker in color, was less salt-sensitive than the red bacillus, in fact surviving the transfer to water. These were "round individual cells or groups of only two or four cells, usually; however, there are eight or more round cells that are arranged like cube corners to great cube-like or irregular packages lying together, just in the same manner as with the familiar Sarcina ventriculi." This organism was also identified from the walls of a fish storage room. Finally, a third, red microorganism was isolated: a Gram-negative micrococcus, Micrococcus (Diplococcus) morrhuae, which was "spherically rounded" and barely sensitive to water: "If one distributes a sample of a colony in water, the cells partly separate, to a great degree; however, they stay together in groups of two or four cells."
Conclusions
This article provides evidence for identification of halophilic microbes as the major cause of fish spoilage, and is one of the earliest publications in the field of halophile microbiology.
doi:10.1186/1746-1448-6-7
PMCID: PMC2912921  PMID: 20569477
8.  Multiple Replication Origins of Halobacterium sp. Strain NRC-1: Properties of the Conserved orc7-Dependent oriC1▿  
Journal of Bacteriology  2009;191(16):5253-5261.
The eukaryote-like DNA replication system of the model haloarchaeon Halobacterium NRC-1 is encoded within a circular chromosome and two large megaplasmids or minichromosomes, pNRC100 and pNRC200. We previously showed by genetic analysis that 2 (orc2 and orc10) of the 10 genes coding for Orc-Cdc6 replication initiator proteins were essential, while a third (orc7), located near a highly conserved autonomously replicating sequence, oriC1, was nonessential for cell viability. Here we used whole-genome marker frequency analysis (MFA) and found multiple peaks, indicative of multiple replication origins. The largest chromosomal peaks were located proximal to orc7 (oriC1) and orc10 (oriC2), and the largest peaks on the extrachromosomal elements were near orc9 (oriP1) in both pNRC100 and -200 and near orc4 (oriP2) in pNRC200. MFA of deletion strains containing different combinations of chromosomal orc genes showed that replication initiation at oriC1 requires orc7 but not orc6 and orc8. The initiation sites at oriC1 were determined by replication initiation point analysis and found to map divergently within and near an AT-rich element flanked by likely Orc binding sites. The oriC1 region, Orc binding sites, and orc7 gene orthologs were conserved in all sequenced haloarchaea. Serial deletion of orc genes resulted in the construction of a minimal strain containing not only orc2 and orc10 but also orc9. Our results suggest that replication in this model system is intriguing and more complex than previously thought. We discuss these results from the perspective of the replication strategy and evolution of haloarchaeal genomes.
doi:10.1128/JB.00210-09
PMCID: PMC2725591  PMID: 19502403
9.  Transcriptional responses to biologically relevant doses of UV-B radiation in the model archaeon, Halobacterium sp. NRC-1 
Saline Systems  2008;4:13.
Background
Most studies of the transcriptional response to UV radiation in living cells have used UV doses that are much higher than those encountered in the natural environment, and most focus on short-wave UV (UV-C) at 254 nm, a wavelength that never reaches the Earth's surface. We have studied the transcriptional response of the sunlight-tolerant model archaeon, Halobacterium sp. NRC-1, to low doses of mid-wave UV (UV-B) to assess its response to UV radiation that is likely to be more biologically relevant.
Results
Halobacterium NRC-1 cells were irradiated with UV-B at doses equivalent to 30 J/m2 and 5 J/m2 of UV-C. Transcriptional profiling showed that only 11 genes were up-regulated 1.5-fold or more by both UV-B doses. The most strongly up-regulated gene was radA1 (vng2473), the archaeal homologue of RAD51/recA recombinase. The others included arj1 (vng779) (recJ-like exonuclease), top6A (vng884) and top6B (vng885) (coding for Topoisomerase VI subunits), and nrdJ (vng1644) (which encodes a subunit of ribonucleotide reductase). We have found that four of the consistently UV-B up-regulated genes, radA1 (vng2473), vng17, top6B (vng885) and vng280, share a common 11-base pair motif in their promoter region, TTTCACTTTCA. Similar sequences were found in radA promoters in other halophilic archaea, as well as in the radA promoter of Methanospirillum hungatei. We analysed the transcriptional response of a repair-deficient ΔuvrA (vng2636) ΔuvrC (vng2381) double-deletion mutant and found common themes between it and the response in repair proficient cells.
Conclusion
Our results show a core set of genes is consistently up-regulated after exposure to UV-B light at low, biologically relevant doses. Eleven genes were up-regulated, in wild-type cells, after two UV-B doses (comparable to UV-C doses of 30 J/m2 and 5 J/m2), and only four genes were up-regulated by all doses of UV-B and UV-C that we have used in this work and previously. These results suggest that high doses of UV-C radiation do not necessarily provide a good model for the natural response to environmental UV. We have found an 11-base pair motif upstream of the TATA box in four of the UV-B up-regulated genes and suggest that this motif is the binding site for a transcriptional regulator involved in their response to UV damage in this model archaeon.
doi:10.1186/1746-1448-4-13
PMCID: PMC2556686  PMID: 18759987
10.  On the origin of prokaryotic "species": the taxonomy of halophilic Archaea 
Saline Systems  2008;4:5.
The consistent use of the taxonomic system of binomial nomenclature (genus and species) was first popularized by Linnaeus nearly three-hundred years ago to classify mainly plants and animals. His main goal was to give labels that would ensure that biologists could agree on which organism was under investigation. One-hundred fifty years later, Darwin considered the term species as one of convenience and not essentially different from variety. In the modern era, exploration of the world's niches together with advances in genomics have expanded the number of named species to over 1.8 million, including many microorganisms. However, even this large number excludes over 90% of microorganisms that have yet to be cultured or classified. In naming new isolates in the microbial world, the challenge remains the lack of a universally held and evenly applied standard for a species. The definition of species based on the capacity to form fertile offspring is not applicable to microorganisms and 70% DNA-DNA hybridization appears rather crude in light of the many completed genome sequences. The popular phylogenetic marker, 16S rRNA, is tricky for classification since it does not provide multiple characteristics or phenotypes used classically for this purpose. Using most criteria, agreement may usually be found at the genus level, but species level distinctions are problematic. These observations lend credence to the proposal that the species concept is flawed when applied to prokaryotes. In order to address this topic, we have examined the taxonomy of extremely halophilic Archaea, where the order, family, and even a genus designation have become obsolete, and the naming and renaming of certain species has led to much confusion in the scientific community.
doi:10.1186/1746-1448-4-5
PMCID: PMC2397426  PMID: 18485204
11.  Dissection of the regulatory mechanism of a heat-shock responsive promoter in Haloarchaea: a new paradigm for general transcription factor directed archaeal gene regulation 
Nucleic Acids Research  2008;36(9):3031-3042.
Multiple general transcription factors (GTFs), TBP and TFB, are present in many haloarchaea, and are deemed to accomplish global gene regulation. However, details and the role of GTF-directed transcriptional regulation in stress response are still not clear. Here, we report a comprehensive investigation of the regulatory mechanism of a heat-induced gene (hsp5) from Halobacterium salinarum. We demonstrated by mutation analysis that the sequences 5′ and 3′ to the core elements (TATA box and BRE) of the hsp5 promoter (Phsp5) did not significantly affect the basal and heat-induced gene expression, as long as the transcription initiation site was not altered. Moreover, the BRE and TATA box of Phsp5 were sufficient to render a nonheat-responsive promoter heat-inducible, in both Haloferax volcanii and Halobacterium sp. NRC-1. DNA–protein interactions revealed that two heat-inducible GTFs, TFB2 from H. volcanii and TFBb from Halobacterium sp. NRC-1, could specifically bind to Phsp5 likely in a temperature-dependent manner. Taken together, the heat-responsiveness of Phsp5 was mainly ascribed to the core promoter elements that were efficiently recognized by specific heat-induced GTFs at elevated temperature, thus providing a new paradigm for GTF-directed gene regulation in the domain of Archaea.
doi:10.1093/nar/gkn152
PMCID: PMC2396416  PMID: 18390887
12.  Transcriptional profiling of the model Archaeon Halobacterium sp. NRC-1: responses to changes in salinity and temperature 
Saline Systems  2007;3:6.
Background
The model halophile Halobacterium sp. NRC-1 was among the first Archaea to be completely sequenced and many post-genomic tools, including whole genome DNA microarrays are now being applied to its analysis. This extremophile displays tolerance to multiple stresses, including high salinity, extreme (non-mesophilic) temperatures, lack of oxygen, and ultraviolet and ionizing radiation.
Results
In order to study the response of Halobacterium sp. NRC-1 to two common stressors, salinity and temperature, we used whole genome DNA microarrays to assay for changes in gene expression under differential growth conditions. Cultures grown aerobically in rich medium at 42°C were compared to cultures grown at elevated or reduced temperature and high or low salinity. The results obtained were analyzed using a custom database and microarray analysis tools. Growth under salt stress conditions resulted in the modulation of genes coding for many ion transporters, including potassium, phosphate, and iron transporters, as well as some peptide transporters and stress proteins. Growth at cold temperature altered the expression of genes involved in lipid metabolism, buoyant gas vesicles, and cold shock proteins. Heat shock showed induction of several known chaperone genes. The results showed that Halobacterium sp. NRC-1 cells are highly responsive to environmental changes at the level of gene expression.
Conclusion
Transcriptional profiling showed that Halobacterium sp. NRC-1 is highly responsive to its environment and provided insights into some of the specific responses at the level of gene expression. Responses to changes in salt conditions appear to be designed to minimize the loss of essential ionic species and abate possible toxic effects of others, while exposure to temperature extremes elicit responses to promote protein folding and limit factors responsible for growth inhibition. This work lays the foundation for further bioinformatic and genetic studies which will lead to a more comprehensive understanding of the biology of a model halophilic Archaeon.
doi:10.1186/1746-1448-3-6
PMCID: PMC1971269  PMID: 17651475
13.  Essential and non-essential DNA replication genes in the model halophilic Archaeon, Halobacterium sp. NRC-1 
BMC Genetics  2007;8:31.
Background
Information transfer systems in Archaea, including many components of the DNA replication machinery, are similar to those found in eukaryotes. Functional assignments of archaeal DNA replication genes have been primarily based upon sequence homology and biochemical studies of replisome components, but few genetic studies have been conducted thus far. We have developed a tractable genetic system for knockout analysis of genes in the model halophilic archaeon, Halobacterium sp. NRC-1, and used it to determine which DNA replication genes are essential.
Results
Using a directed in-frame gene knockout method in Halobacterium sp. NRC-1, we examined nineteen genes predicted to be involved in DNA replication. Preliminary bioinformatic analysis of the large haloarchaeal Orc/Cdc6 family, related to eukaryotic Orc1 and Cdc6, showed five distinct clades of Orc/Cdc6 proteins conserved in all sequenced haloarchaea. Of ten orc/cdc6 genes in Halobacterium sp. NRC-1, only two were found to be essential, orc10, on the large chromosome, and orc2, on the minichromosome, pNRC200. Of the three replicative-type DNA polymerase genes, two were essential: the chromosomally encoded B family, polB1, and the chromosomally encoded euryarchaeal-specific D family, polD1/D2 (formerly called polA1/polA2 in the Halobacterium sp. NRC-1 genome sequence). The pNRC200-encoded B family polymerase, polB2, was non-essential. Accessory genes for DNA replication initiation and elongation factors, including the putative replicative helicase, mcm, the eukaryotic-type DNA primase, pri1/pri2, the DNA polymerase sliding clamp, pcn, and the flap endonuclease, rad2, were all essential. Targeted genes were classified as non-essential if knockouts were obtained and essential based on statistical analysis and/or by demonstrating the inability to isolate chromosomal knockouts except in the presence of a complementing plasmid copy of the gene.
Conclusion
The results showed that ten out of nineteen eukaryotic-type DNA replication genes are essential for Halobacterium sp. NRC-1, consistent with their requirement for DNA replication. The essential genes code for two of ten Orc/Cdc6 proteins, two out of three DNA polymerases, the MCM helicase, two DNA primase subunits, the DNA polymerase sliding clamp, and the flap endonuclease.
doi:10.1186/1471-2156-8-31
PMCID: PMC1906834  PMID: 17559652
14.  Post-genomics of the model haloarchaeon Halobacterium sp. NRC-1 
Saline Systems  2006;2:3.
Halobacteriumsp. NRC-1 is an extremely halophilic archaeon that is easily cultured and genetically tractable. Since its genome sequence was completed in 2000, a combination of genetic, transcriptomic, proteomic, and bioinformatic approaches have provided insights into both its extremophilic lifestyle as well as fundamental cellular processes common to all life forms. Here, we review post-genomic research on this archaeon, including investigations of DNA replication and repair systems, phototrophic, anaerobic, and other physiological capabilities, acidity of the proteome for function at high salinity, and role of lateral gene transfer in its evolution.
doi:10.1186/1746-1448-2-3
PMCID: PMC1447603  PMID: 16542428

Results 1-14 (14)