PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (38)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Prevalence of Premorbid Metabolic Syndrome in Spanish Adult Workers Using IDF and ATPIII Diagnostic Criteria: Relationship with Cardiovascular Risk Factors 
PLoS ONE  2014;9(2):e89281.
Background
Metabolic Syndrome (MetS) is a complex disorder defined as a cluster of interconnected risk factors such as hypertension, dyslipidemia, obesity and high blood glucose levels. Premorbid metabolic syndrome (PMetS) is defined by excluding patients with previously diagnosed cardiovascular disease or diabetes mellitus from those suffering MetS. We aimed to determine the prevalence of PMetS in a working population, and to analyse the relationship between the diagnostic criteria of the International Diabetes Federation (IDF) and of the National Cholesterol Education Program Adult Treatment Panel III (ATPIII). The relationship between the presence of PMetS and cardiovascular risk factors was also analysed.
Research Methodology/Findings
A cross-sectional study was conducted in 24,529 male and 18,736 female Spanish (white western European) adult workers (20–65 years) randomly selected during their work health periodic examinations. Anthropometrics, blood pressure and serum parameters were measured. The presence of MetS and PMetS was ascertained using ATPIII and IDF criteria. Cardiovascular risk was determined using the Framingham-REGICOR equation. The results showed MetS had an adjusted global prevalence of 12.39% using ATPIII criteria and 16.46% using IDF criteria. The prevalence of PMetS was slightly lower (11.21% using ATPIII criteria and 14.72% using IDF criteria). Prevalence in males was always higher than in females. Participants with PMetS displayed higher values of BMI, waist circumference, blood pressure, glucose and triglycerides, and lower HDL-cholesterol levels. Logistic regression models reported lower PMetS risk for females, non-obese subjects, non-smokers and younger participants. Cardiovascular risk determined with Framingham-REGICOR was higher in participants with PMetS.
Conclusions
PMetS could be a reliable tool for the early identification of apparently healthy individuals who have a significant risk for developing cardiovascular events and type 2 diabetes.
doi:10.1371/journal.pone.0089281
PMCID: PMC3930690  PMID: 24586656
2.  Deficient Phosphorylation of Stat1 in Leukocytes Identifies Neutralizing Antibodies in Multiple Sclerosis Patients Treated with Interferon-Beta 
PLoS ONE  2014;9(2):e88632.
Background
Anti interferon-beta (IFN-β) neutralizing antibodies (NAb) affect efficacy of treatment of multiple sclerosis patients, but exactly when the detrimental effects of NAbs offset therapeutic efficacy is debated. Quantification of intracellular pathway-specific phosphorylation by phospho-specific flow cytometry (phosphoflow) is a promising tool for evaluation of these effects in primary immune cells from treated patients at the single-cell level.
Method
Samples for phosphoflow and gene expression changes were collected before administration of IFN-β and at four, six, and eight hours thereafter. Patients were NAb negative (n = 3) or were NAb positive with low/medium (n = 1) or high (n = 2) NAb titers. Levels of phosphorylation of six Stat transcription factors (pStat) in seven cell subtypes and expression levels of 71 pathway-specific genes in whole blood were measured. The data was subjected to principal component analysis (PCA), fifty-fifty MANOVA, ANOVA, and partial least square regression (PLSR).
Results
PCA of pStat levels clustered patients according to NAb class independently of time. PCA of gene expression data clustered patients according to NAb class but was affected by time and treatment. In the fifty-fifty MANOVA, NAb class was significant for both pStat levels and gene expression data. The ANOVA identified pStat1 protein in several cell subtypes as significantly affected by NAb class. The best fitting model for NAb prediction based on PLSR included pStat1 in monocytes, T cells, or lymphocytes and pStat3 in monocytes (r = 0.97). Gene expression data were slightly less predictive of NAb titers.
Conclusion
Based on this proof of concept study, we hypothesize that NAb effects can be monitored by evaluation of a single biomarker, pStat1, in either monocytes or T cells by phosphoflow directly after IFN-β administration. The method will significantly reduce cost relative to labor intensive in vitro methods and offers a patient-specific approach to NAb evaluation.
doi:10.1371/journal.pone.0088632
PMCID: PMC3929401  PMID: 24586361
3.  Maternal Obesity Affects Fetal Neurodevelopmental and Metabolic Gene Expression: A Pilot Study 
PLoS ONE  2014;9(2):e88661.
Objective
One in three pregnant women in the United States is obese. Their offspring are at increased risk for neurodevelopmental and metabolic morbidity. Underlying molecular mechanisms are poorly understood. We performed a global gene expression analysis of mid-trimester amniotic fluid cell-free fetal RNA in obese versus lean pregnant women.
Methods
This prospective pilot study included eight obese (BMI≥30) and eight lean (BMI<25) women undergoing clinically indicated mid-trimester genetic amniocentesis. Subjects were matched for gestational age and fetal sex. Fetuses with abnormal karyotype or structural anomalies were excluded. Cell-free fetal RNA was extracted from amniotic fluid and hybridized to whole genome expression arrays. Genes significantly differentially regulated in 8/8 obese-lean pairs were identified using paired t-tests with the Benjamini-Hochberg correction (false discovery rate of <0.05). Biological interpretation was performed with Ingenuity Pathway Analysis and the BioGPS gene expression atlas.
Results
In fetuses of obese pregnant women, 205 genes were significantly differentially regulated. Apolipoprotein D, a gene highly expressed in the central nervous system and integral to lipid regulation, was the most up-regulated gene (9-fold). Apoptotic cell death was significantly down-regulated, particularly within nervous system pathways involving the cerebral cortex. Activation of the transcriptional regulators estrogen receptor, FOS, and STAT3 was predicted in fetuses of obese women, suggesting a pro-estrogenic, pro-inflammatory milieu.
Conclusion
Maternal obesity affects fetal neurodevelopmental and metabolic gene expression as early as the second trimester. These findings may have implications for postnatal neurodevelopmental and metabolic abnormalities described in the offspring of obese women.
doi:10.1371/journal.pone.0088661
PMCID: PMC3928248  PMID: 24558408
4.  Maternal Factors Associated with Fetal Growth and Birthweight Are Independent Determinants of Placental Weight and Exhibit Differential Effects by Fetal Sex 
PLoS ONE  2014;9(2):e87303.
Introduction
Maternal nutritional and metabolic factors influence the developmental environment of the fetus. Virtually any nutritional factor in the maternal blood has to pass the placental membranes to reach the fetal blood. Placental weight is a commonly used measure to summarize placental growth and function. Placental weight is an independent determinant of fetal growth and birthweight and modifies the associations between maternal metabolic factors and fetal growth. We hypothesized that maternal factors known to be related to fetal growth, newborn size and body composition are determinants of placental weight and that effects of maternal metabolic factors on placental weight differ between the genders.
Methods
The STORK study is a prospective longitudinal study including 1031 healthy pregnant women of Scandinavian heritage with singleton pregnancies. Maternal determinants (parity, body mass index, gestational weight gain and fasting plasma glucose) of placental weight were explored by linear regression models, stratified by fetal sex.
Results
Parity, maternal BMI, gestational weight gain and fasting glucose had positive effects on placental weight. There was a sex specific effect in these associations. Fasting glucose was significantly associated with placental weight in females but not in males.
Conclusion
Maternal factors known to influence fetal growth, birthweight and neonatal body composition are determinants of placental weight. The effect of maternal factors on placental weight is influenced by sex as illustrated in the relation between maternal glucose and placental weight.
doi:10.1371/journal.pone.0087303
PMCID: PMC3916298  PMID: 24516548
5.  Effect of Sfrp5 on Cytokine Release and Insulin Action in Primary Human Adipocytes and Skeletal Muscle Cells 
PLoS ONE  2014;9(1):e85906.
Secreted frizzled-related protein 5 (Sfrp5) is an adipokine with anti-inflammatory and insulin-sensitizing properties in mice. However, the mechanism of Sfrp5 action, especially in humans, is largely unknown. Therefore, cytokine release and insulin signaling were analyzed to investigate the impact of Sfrp5 on inflammation and insulin signaling in primary human adipocytes and skeletal muscle cells (hSkMC). Sfrp5 neither affected interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1) and adiponectin release from human adipocytes, nor IL-6 and IL-8 release from hSkMC. In tumor necrosis factor (TNF) α-treated adipocytes, Sfrp5 reduced IL-6 release by 49% (p<0.05), but did not affect MCP-1 and adiponectin release. In MCP-1-treated hSkMC, Sfrp5 did not affect cytokine secretion. In untreated adipocytes, Sfrp5 decreased the insulin-mediated phosphorylation of Akt-Ser473, Akt-Thr308, GSK3α-Ser21 and PRAS40-Thr246 by 34% (p<0.01), 31% (p<0.05), 37% (p<0.05) and 34% (p<0.01), respectively, and the stimulation of glucose uptake by 25% (p<0.05). Incubation with TNFα increased the phosphorylation of JNK and NFκB, and impaired insulin signaling. When Sfrp5 and TNFα were combined, there was no additional effect on insulin signaling and JNK phosphorylation, but phosphorylation of NFκB was reversed to basal levels. Sfrp5 had no effect on insulin signaling in untreated or in MCP-1 treated hSkMC. Thus, Sfrp5 lowered IL-6 release and NFκB phosphorylation in cytokine-treated human adipocytes, but not under normal conditions, and decreased insulin signaling in untreated human adipocytes. Sfrp5 did not act on hSkMC. Therefore, the cellular actions of Sfrp5 seem to depend on the type of tissue as well as its inflammatory and metabolic state.
doi:10.1371/journal.pone.0085906
PMCID: PMC3897555  PMID: 24465779
6.  Circulating Docosahexaenoic Acid Levels Are Associated with Fetal Insulin Sensitivity 
PLoS ONE  2014;9(1):e85054.
Background
Arachidonic acid (AA; C20∶4 n-6) and docosahexaenoic acid (DHA; C22∶6 n-3) are important long-chain polyunsaturated fatty acids (LC-PUFA) in maintaining pancreatic beta-cell structure and function. Newborns of gestational diabetic mothers are more susceptible to the development of type 2 diabetes in adulthood. It is not known whether low circulating AA or DHA is involved in perinatally “programming” this susceptibility. This study aimed to assess whether circulating concentrations of AA, DHA and other fatty acids are associated with fetal insulin sensitivity or beta-cell function, and whether low circulating concentrations of AA or DHA are involved in compromised fetal insulin sensitivity in gestational diabetic pregnancies.
Methods and Principal Findings
In a prospective singleton pregnancy cohort, maternal (32-35 weeks gestation) and cord plasma fatty acids were assessed in relation to surrogate indicators of fetal insulin sensitivity (cord plasma glucose-to-insulin ratio, proinsulin concentration) and beta-cell function (proinsulin-to-insulin ratio) in 108 mother-newborn pairs. Cord plasma DHA levels (in percentage of total fatty acids) were lower comparing newborns of gestational diabetic (n = 24) vs. non-diabetic pregnancies (2.9% vs. 3.5%, P = 0.01). Adjusting for gestational age at blood sampling, lower cord plasma DHA levels were associated with lower fetal insulin sensitivity (lower glucose-to-insulin ratio, r = 0.20, P = 0.036; higher proinsulin concentration, r = −0.37, P <0.0001). The associations remained after adjustment for maternal and newborn characteristics. Cord plasma saturated fatty acids C18∶0 and C20∶0 were negatively correlated with fetal insulin sensitivity, but their levels were not different between gestational diabetic and non-diabetic pregnancies. Cord plasma AA levels were not correlated with fetal insulin sensitivity.
Conclusion
Low circulating DHA levels are associated with compromised fetal insulin sensitivity, and may be involved in perinatally “programming” the susceptibility to type 2 diabetes in the offspring of gestational diabetic mothers.
doi:10.1371/journal.pone.0085054
PMCID: PMC3890289  PMID: 24454790
7.  In Vitro and In Vivo Enhancement of Adipogenesis by Italian Ryegrass (Lolium multiflorum) in 3T3-L1 Cells and Mice 
PLoS ONE  2014;9(1):e85297.
Adipogenesis is very much important in improving the quality of meat in animals. The aim of the present study was to investigate the in vitro and in vivo adipogenesis regulation properties of Lolium multiflorum on 3T3-L1 pre-adipocytes and mice. Chemical composition of petroleum ether extract of L. multiflorum (PET-LM) confirmed the presence of fatty acids, such as α-linolenic acid, docosahexaenoic acid, oleic acid, docosatetraenoic acid, and caprylic acid, as the major compounds. PET-LM treatment increased viability, lipid accumulation, lipolysis, cell cycle progression, and DNA synthesis in the cells. PET-LM treatment also augmented peroxysome proliferator activated receptor (PPAR)-γ2, CCAAT/enhancer binding protein-α, adiponectin, adipocyte binding protein, glucose transporter-4, fatty acid synthase, and sterol regulatory element binding protein-1 expression at mRNA and protein levels in differentiated adipocytes. In addition, mice administered with 200 mg/kg body weight PET-LM for 8 weeks showed greater body weight than control mice. These findings suggest that PET-LM facilitates adipogenesis by stimulating PPARγ-mediated signaling cascades in adipocytes which could be useful for quality meat development in animals.
doi:10.1371/journal.pone.0085297
PMCID: PMC3890303  PMID: 24454838
8.  Adiponectin Impairs Chicken Preadipocytes Differentiation through p38 MAPK/ATF-2 and TOR/p70 S6 Kinase Pathways 
PLoS ONE  2013;8(10):e77716.
Adiponectin is a protein hormone secreted exclusively by adipocytes that plays an important role in the modulation of glucose and lipid metabolism. In the present study, we investigated the ability of adiponectin to stimulate chicken preadipocyte differentiation and its effect on cellular signaling pathways associated with adipocyte differentiation. Data showed that over-expression of adiponectin inhibited adipocyte differentiation and the expression of adipogenic marker gene, while activated the expression of lipolytic marker gene. Meanwhile, adiponectin led to activation of p38 mitogen-activated protein kinase (p38 MAPK)/activating transcription factor 2 (ATF-2) signaling pathway and down-regulation of target of rapamycin (TOR)/p70 S6 Kinase signaling pathway. Furthermore, the activation of p38 MAPK/ATF-2 signaling pathway was blocked by the p38 MAPK inhibitor SB253580, whereas adiponectin had a synergistic effect on the suppression of TOR/p70 S6 Kinase signaling pathway with the TOR inhibitor rapamycin. In conclusion, the results demonstrate the ability of adiponectin to inhibit chicken preadipocyte differentiation, which depends on the p38 MAPK/ATF-2 and TOR/p70 S6 Kinase pathways.
doi:10.1371/journal.pone.0077716
PMCID: PMC3806819  PMID: 24194895
9.  Leptin Induces IL-6 Expression through OBRl Receptor Signaling Pathway in Human Synovial Fibroblasts 
PLoS ONE  2013;8(9):e75551.
Background
Leptin, an adipocyte-secreted hormone that centrally regulates weight control, may exert proinflammatory effects in the joint, depending on the immune response. Leptin is abundantly expressed in osteoarthritis (OA) cartilage and synovium. However, the relationship between leptin and interleukin-6 (IL-6) in OA synovial fibroblasts (OASFs) remains obscure.
Methodology/Principal Findings
Stimulation of OASFs with leptin induced IL-6 expression in a concentration- and time-dependent manner. OASFs expressed the long (OBRl) and short (OBRs) isoforms of the leptin receptor. However, OBRl, but not OBRs, antisense oligonucleotide (AS-ODN) abolished the leptin-mediated increase of IL-6 expression. Transfection with insulin receptor substrate (IRS)-1 siRNA decreased leptin-induced IL-6 production. In addition, pretreatment of cells with PI3K, Akt, or AP-1 inhibitor also inhibited the potentiating action of leptin. Leptin-induced AP-1 activation was inhibited by OBRl, IRS-1, PI3K, or Akt inhibitors and siRNAs.
Conclusions/Significance
Our results showed that leptin activates the OBRl receptor, which in turn activates IRS-1, PI3K, Akt, and AP-1 pathway, leading to up-regulation of IL-6 expression.
doi:10.1371/journal.pone.0075551
PMCID: PMC3785513  PMID: 24086566
10.  Hyaluronan-CD44 Interaction Promotes Growth of Decidual Stromal Cells in Human First-Trimester Pregnancy 
PLoS ONE  2013;8(9):e74812.
Hyaluronan (HA) and its receptor CD44 are expressed at the maternal-fetal interface, but its role in early pregnancy remains unclear. Here, we found that primary decidual stromal cells (DSCs) continuously secreted HA and expressed its receptor CD44. Pregnancy-associated hormones up-regulated HA synthetase (HAS) 2 transcription and HA release from DSCs. High molecular weight-HA (HMW-HA), but not medium molecular weight (MMW-HA) or low molecular weight (LMW-HA), promoted proliferation and inhibited apoptosis of DSCs in a CD44-dependent manner. The in-cell Western analysis revealed HMW-HA activated PI3K/AKT and mitogen-activated protein kinase (MAPK)/ERK1/2 signaling pathways time-dependently. Blocking these pathways by specific inhibitor LY294002 or U0126 abrogated HMW-HA-regulated DSc proliferation and apoptosis. Finally, we have found that HA content, HA molecular weight, HAS2 mRNA level, and CD44 expression were significantly decreased in DSCs from unexplained miscarriage compared with the normal pregnancy. Collectively, our results indicate that higher level and greater molecular mass of HA at maternal-fetal interface contributes to DSc growth and maintenance of DSCs in human early pregnancy.
doi:10.1371/journal.pone.0074812
PMCID: PMC3777984  PMID: 24069351
11.  Triiodothyronine Increases mRNA and Protein Leptin Levels in Short Time in 3T3-L1 Adipocytes by PI3K Pathway Activation 
PLoS ONE  2013;8(9):e74856.
The present study aimed to examine the effects of thyroid hormone (TH), more precisely triiodothyronine (T3), on the modulation of leptin mRNA expression and the involvement of the phosphatidyl inositol 3 kinase (PI3K) signaling pathway in adipocytes, 3T3-L1, cell culture. We examined the involvement of this pathway in mediating TH effects by treating 3T3-L1 adipocytes with physiological (P=10nM) or supraphysiological (SI=100 nM) T3 dose during one hour (short time), in the absence or the presence of PI3K inhibitor (LY294002). The absence of any treatment was considered the control group (C). RT-qPCR was used for mRNA expression analyzes. For data analyzes ANOVA complemented with Tukey’s test was used at 5% significance. T3 increased leptin mRNA expression in P (2.26 ± 0.36, p< 0.001), SI (1.99 ±0.22, p< 0.01) compared to C group (1± 0.18). This increase was completely abrogated by LY294002 in P (1.31±0.05, p< 0.001) and SI (1.33±0.31, p< 0.05). Western blotting confirmed these results at protein level, indicating the PI3K pathway dependency. To examine whether leptin is directly induced by T3, we used the translation inhibitor cycloheximide (CHX). In P, the presence of CHX maintained the levels mRNA leptin, but was completely abrogated in SI (1.14±0.09, p> 0.001). These results demonstrate that the activation of the PI3K signaling pathway has a role in TH-mediated direct and indirect leptin gene expression in 3T3-L1 adipocytes.
doi:10.1371/journal.pone.0074856
PMCID: PMC3776751  PMID: 24058635
12.  Increase or Decrease Hydrogen Sulfide Exert Opposite Lipolysis, but Reduce Global Insulin Resistance in High Fatty Diet Induced Obese Mice 
PLoS ONE  2013;8(9):e73892.
Objective
Adipose tissue expressed endogenous cystathionine gamma lyase (CSE)/hydrogen sulfide (H2S) system. H2S precursor inhibited catecholamine stimulated lipolysis. Thus, we hypothesized that CSE/H2S system regulates lipolysis which contributed to the pathogenesis of insulin resistance.
Methods
We treated rat adipocyte with DL-propargylglycine (PAG, a CSE inhibitor), L-cysteine (an H2S precursor) plus pyridoxial phosphate (co-enzyme) or the H2S chronic release donor GYY4137, then the glycerol level was assayed for assessing the lipolysis. Then, the effects of PAG and GYY4137 on insulin resistance in high fatty diet (HFD) induced obese mice were investigated.
Results
Here, we found that PAG time-dependently increased basal or isoproterenol stimulated lipolysis. However, L-cysteine plus pyridoxial phosphate or GYY4137 significantly reduced it. PAG increased phosphorylated protein kinase A substrate, perilipin 1 and hormone sensitive lipase, but L-cysteine and GYY4137 decreased the parameters. In HFD induced obese mice, PAG increased adipose basal lipolysis, thus blunted fat mass increase, resulting in lowering insulin resistance evidenced by reduction of fasting glucose, insulin level, HOMA index, oral glucose tolerance test (OGTT) curve area and elevating the insulin tolerance test (ITT) response. GYY4137 inhibited lipolysis in vivo without increasing fat mass, but also ameliorated the insulin resistance in HFD mice.
Conclusion
These results implicated that inhibition endogenous CSE/H2S system in adipocytes increased lipolysis by a protein kinase A-perilipin/hormone-sensitive lipase pathway, thus blunted fat mass increase and reduced insulin resistance in obese mice; giving H2S donor decreased lipolysis, also reduced insulin resistance induced by HFD. Our data showed that increase or decrease H2S induced opposite lipolysis, but had the same effect on insulin resistance. The paradoxical regulation may be resulted from different action of H2S on metabolic and endocrine function in adipocyte.
doi:10.1371/journal.pone.0073892
PMCID: PMC3772803  PMID: 24058499
13.  Leptin Promotes Fetal Lung Maturity and Upregulates SP-A Expression in Pulmonary Alveoli Type-II Epithelial Cells Involving TTF-1 Activation 
PLoS ONE  2013;8(7):e69297.
The placental hormone leptin has important functions in fetal and neonatal growth, and prevents depressed respiration in leptin-deficient mice. The effect of leptin on respiratory distress suffered by low birth weight and premature infants has been studied. However, it is unclear how leptin enhances lung maturity in the fetus and ameliorates neonatal respiratory distress. In the present study, we found that antenatal treatment with leptin for 2 d significantly enhanced the relative alveolus area and improved the maturity of fetal lungs in a rat model of fetal growth restriction (FGR). Mean birth weight and lung wet weight were higher in the leptin-treated group than in the PBS-treated group, indicating promotion of fetal growth. Leptin upregulated the intracellular expression and extracellular secretion of surfactant protein (SP) A in type-II alveolar epithelial cells (AECs) in vivo and in vitro. Dual positive effects of leptin were found on protein expression and transcriptional activity of thyroid transcription factor-1 (TTF-1), a nuclear transcription essential for branching morphogenesis of the lung and expression of SP-A in type-II AECs. Knockdown of TTF-1 by RNA interference indicated that TTF-1 may play a vital role in leptin-induced SP-A expression. These results suggest that leptin may have great therapeutic potential for the treatment of FGR, and leptin-mediated SP-A induction and lung maturity of the fetus are TTF-1 dependent.
doi:10.1371/journal.pone.0069297
PMCID: PMC3718688  PMID: 23894445
14.  Altered Regulation of ELAVL1/HuR in HLA-B27–Expressing U937 Monocytic Cells 
PLoS ONE  2013;8(7):e70377.
Objective
To investigate the role of HLA-B27 expression in the regulation of RNA binding protein (RBP) Embryonic Lethal Abnormal Vision (ELAV) L1/Human antigen R (HuR) expression in Salmonella-infected or LPS-stimulated human monocytic cells, since HuR is a critical regulator of the post-transcriptional fate of many genes (e.g. TNFα) important in inflammatory response.
Methods
U937 monocytic cells were stably transfected with pSV2neo resistant vector (mock), wild type HLA–B27, or mutated HLA–B27 with amino acid substitutions in the B pocket. Cells were differentiated, infected with Salmonella enteritidis or stimulated with lipopolysaccharide. The expression levels of HuR protein and cleavage products (CP1 and CP2) were detected by Western blotting and flow cytometry. Specific inhibitors were used to study the role of PKR and p38 in HuR expression and generation of CPs. TNFα and IL-10 secretion after p38 and PKR inhibition were measured by ELISA.
Results
Full length HuR is overexpressed and HuR cleavage is disturbed in U937 monocytic cells expressing HLA-B27 heavy chains (HC). Increased full length HuR expression, disturbed cleavage and reduced dependence on PKR after infection correlate with the expression of glutamic acid 45 in the B pocket that is linked to the misfolding of HLA-B27.
Conclusion
Results show that the expression of HLA-B27 HCs modulates the intracellular environment of U937 monocyte/macrophages by altering HuR regulation. This phenomenon is at least partly dependent on the misfolding feature of the B27 molecule. Since HuR is an important regulator of multiple genes involved in inflammatory response observations offer an explanation how HLA-B27 may modulate inflammatory response.
doi:10.1371/journal.pone.0070377
PMCID: PMC3718773  PMID: 23894643
15.  Pre-Pubertal Children Born Post-Term Have Reduced Insulin Sensitivity and Other Markers of the Metabolic Syndrome 
PLoS ONE  2013;8(7):e67966.
Background
There are no data on the metabolic consequences of post-term birth (≥42 weeks gestation). We hypothesized that post-term birth would adversely affect insulin sensitivity, as well as other metabolic parameters and body composition in childhood.
Methods
77 healthy pre-pubertal children, born appropriate-for-gestational-age were studied in Auckland, New Zealand: 36 born post-term (18 boys) and 41 (27 boys) born at term (38–40 weeks gestation). Primary outcome was insulin sensitivity measured using intravenous glucose tolerance tests and Bergman’s minimal model. Other assessments included fasting hormone concentrations and lipid profiles, body composition from whole-body dual-energy X-ray absorptiometry, 24-hour ambulatory blood pressure monitoring, and inflammatory markers.
Results
Insulin sensitivity was 34% lower in post-term than in term children (7.7 vs. 11.6 x10-4·min-1·(mU/l); p<0.0001). There was a compensatory increase in acute insulin response among post-term children (418 vs 304 mU/l; p=0.037), who also displayed lower glucose effectiveness than those born at term (2.25 vs 3.11 x10-2·min-1; p=0.047). Post-term children not only had more body fat (p=0.014) and less fat-free mass (p=0.014), but also had increased central adiposity with more truncal fat (p=0.017) and greater android to gynoid fat ratio (p=0.007) compared to term controls. Further, post-term children displayed other markers of the metabolic syndrome: lower normal nocturnal systolic blood pressure dipping (p=0.027), lower adiponectin concentrations (p=0.005), as well as higher leptin (p=0.008) and uric acid (p=0.033) concentrations. Post-term boys (but not girls) also displayed a less favourable lipid profile, with higher total cholesterol (p=0.018) and LDL-C (p=0.006) concentrations, and total cholesterol to HDL-C ratio (p=0.048).
Conclusions
Post-term children have reduced insulin sensitivity and display a number of early markers of the metabolic syndrome. These findings could have important implications for the management of prolonged pregnancies. Future studies need to examine potential impacts later in life, as well as possible underlying mechanisms.
doi:10.1371/journal.pone.0067966
PMCID: PMC3698136  PMID: 23840881
16.  Transgenic Increase in N-3/N-6 Fatty Acid Ratio Reduces Maternal Obesity-Associated Inflammation and Limits Adverse Developmental Programming in Mice 
PLoS ONE  2013;8(6):e67791.
Maternal and pediatric obesity has risen dramatically over recent years, and is a known predictor of adverse long-term metabolic outcomes in offspring. However, which particular aspects of obese pregnancy promote such outcomes is less clear. While maternal obesity increases both maternal and placental inflammation, it is still unknown whether this is a dominant mechanism in fetal metabolic programming. In this study, we utilized the Fat-1 transgenic mouse to test whether increasing the maternal n-3/n-6 tissue fatty acid ratio could reduce the consequences of maternal obesity-associated inflammation and thereby mitigate downstream developmental programming. Eight-week-old WT or hemizygous Fat-1 C57BL/6J female mice were placed on a high-fat diet (HFD) or control diet (CD) for 8 weeks prior to mating with WT chow-fed males. Only WT offspring from Fat-1 mothers were analyzed. WT-HFD mothers demonstrated increased markers of infiltrating adipose tissue macrophages (P<0.02), and a striking increase in 12 serum pro-inflammatory cytokines (P<0.05), while Fat1-HFD mothers remained similar to WT-CD mothers, despite equal weight gain. E18.5 Fetuses from WT-HFD mothers had larger placentas (P<0.02), as well as increased placenta and fetal liver TG deposition (P<0.01 and P<0.02, respectively) and increased placental LPL TG-hydrolase activity (P<0.02), which correlated with degree of maternal insulin resistance (r = 0.59, P<0.02). The placentas and fetal livers from Fat1-HFD mothers were protected from this excess placental growth and fetal-placental lipid deposition. Importantly, maternal protection from excess inflammation corresponded with improved metabolic outcomes in adult WT offspring. While the offspring from WT-HFD mothers weaned onto CD demonstrated increased weight gain (P<0.05), body and liver fat (P<0.05 and P<0.001, respectively), and whole body insulin resistance (P<0.05), these were prevented in WT offspring from Fat1-HFD mothers. Our results suggest that reducing excess maternal inflammation may be a promising target for preventing adverse fetal metabolic outcomes in pregnancies complicated by maternal obesity.
doi:10.1371/journal.pone.0067791
PMCID: PMC3692451  PMID: 23825686
17.  Insulin Promotes Glucose Consumption via Regulation of miR-99a/mTOR/PKM2 Pathway 
PLoS ONE  2013;8(6):e64924.
Insulin is known to regulate multiple cellular functions and is used for the treatment of diabetes. MicroRNAs have been demonstrated to be involved in many human diseases, including Type 2 diabetes. In this study, we showed that insulin decreased miR-99a expression levels, but induced glucose consumption and lactate production, and increased the expression of mTOR, HIF-1α and PKM2 in HepG2 and HL7702 cells. Forced expression of miR-99a or rapamycin treatment blocked insulin-induced PKM2 and HIF-1α expression, and glucose consumption and lactate production. Meanwhile, knockdown of HIF-1α inhibited PKM2 expression and insulin-induced glucose consumption. Taken together, these findings will reveal the role and mechanism ofinsulin in regulating glycolytic activities via miR-99a/mTOR.
doi:10.1371/journal.pone.0064924
PMCID: PMC3677911  PMID: 23762265
18.  Lower Cerebrospinal Fluid/Plasma Fibroblast Growth Factor 21 (FGF21) Ratios and Placental FGF21 Production in Gestational Diabetes 
PLoS ONE  2013;8(6):e65254.
Objectives
Circulating Fibroblast Growth Factor 21 (FGF21) levels are increased in insulin resistant states such as obesity, type 2 diabetes mellitus and gestational diabetes mellitus (GDM). In addition, GDM is associated with serious maternal and fetal complications. We sought to study human cerebrospinal fluid (CSF) and corresponding circulating FGF21 levels in women with gestational diabetes mellitus (GDM) and in age and BMI matched control subjects. We also assessed FGF21 secretion from GDM and control human placental explants.
Design
CSF and corresponding plasma FGF21 levels of 24 women were measured by ELISA [12 GDM (age: 26–47 years, BMI: 24.3–36.3 kg/m2) and 12 controls (age: 22–40 years, BMI: 30.1–37.0 kg/m2)]. FGF21 levels in conditioned media were secretion from GDM and control human placental explants were also measured by ELISA.
Results
Glucose, HOMA-IR and circulating NEFA levels were significantly higher in women with GDM compared to control subjects. Plasma FGF21 levels were significantly higher in women with GDM compared to control subjects [234.3 (150.2–352.7) vs. 115.5 (60.5–188.7) pg/ml; P<0.05]. However, there was no significant difference in CSF FGF21 levels in women with GDM compared to control subjects. Interestingly, CSF/Plasma FGF21 ratio was significantly lower in women with GDM compared to control subjects [0.4 (0.3–0.6) vs. 0.8 (0.5–1.6); P<0.05]. FGF21 secretion into conditioned media was significantly lower in human placental explants from women with GDM compared to control subjects (P<0.05).
Conclusions
The central actions of FGF21 in GDM subjects maybe pivotal in the pathogenesis of insulin resistance in GDM subjects. The significance of FGF21 produced by the placenta remains uncharted and maybe crucial in our understanding of the patho-physiology of GDM and its associated maternal and fetal complications. Future research should seek to elucidate these points.
doi:10.1371/journal.pone.0065254
PMCID: PMC3670883  PMID: 23755203
19.  CD69 Is a TGF-β/1α,25-dihydroxyvitamin D3 Target Gene in Monocytes 
PLoS ONE  2013;8(5):e64635.
CD69 is a transmembrane lectin that can be expressed on most hematopoietic cells. In monocytes, it has been functionally linked to the 5-lipoxygenase pathway in which the leukotrienes, a class of highly potent inflammatory mediators, are produced. However, regarding CD69 gene expression and its regulatory mechanisms in monocytes, only scarce data are available. Here, we report that CD69 mRNA expression, analogous to that of 5-lipoxygenase, is induced by the physiologic stimuli transforming growth factor-β (TGF-β) and 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) in monocytic cells. Comparison with T- and B-cell lines showed that the effect was specific for monocytes. CD69 expression levels were increased in a concentration-dependent manner, and kinetic analysis revealed a rapid onset of mRNA expression, indicating that CD69 is a primary TGF-β/1α,25(OH)2D3 target gene. PCR analysis of different regions of the CD69 mRNA revealed that de novo transcription was initiated and proximal and distal parts were induced concomitantly. In common with 5-lipoxygenase, no activation of 0.7 kb or ∼2.3 kb promoter fragments by TGF-β and 1α,25(OH)2D3 could be observed in transient reporter assays for CD69. Analysis of mRNA stability using a transcription inhibitor and a 3′UTR reporter construct showed that TGF-β and 1α,25(OH)2D3 do not influence CD69 mRNA stability. Functional knockdown of Smad3 clearly demonstrated that upregulation of CD69 mRNA, in contrast to 5-LO, depends on Smad3. Comparative studies with different inhibitors for mitogen activated protein kinases (MAPKs) revealed that MAPK signalling is involved in CD69 gene regulation, whereas 5-lipoxygenase gene expression was only partly affected. Mechanistically, we found evidence that CD69 gene upregulation depends on TAK1-mediated p38 activation. In summary, our data indicate that CD69 gene expression, conforming with 5-lipoxygenase, is regulated monocyte-specifically by the physiologic stimuli TGF-β and 1α,25(OH)2D3 on mRNA level, although different mechanisms account for the upregulation of each gene.
doi:10.1371/journal.pone.0064635
PMCID: PMC3655964  PMID: 23696902
20.  The Differential Expression of Kiss1, MMP9 and Angiogenic Regulators across the Feto-Maternal Interface of Healthy Human Pregnancies: Implications for Trophoblast Invasion and Vessel Development 
PLoS ONE  2013;8(5):e63574.
Genes involved in invasion of trophoblast cells and angiogenesis are crucial in determining pregnancy outcome. We therefore studied expression profiles of these genes in both fetal and maternal tissues to enhance our understanding of feto-maternal dialogue. We investigated the expression of genes involved in trophoblast invasion, namely Kiss1, Kiss1 Receptor (Kiss1R) and MMP9 as well as the expression of angiogenic ligands Vascular Endothelial Growth Factor-A (VEGF-A) and Prokineticin-1 (PROK1) and their respective receptors (VEGFR1, VEGFR2 and PROK1R) across the feto-maternal interface of healthy human pregnancies. The placenta, placental bed and decidua parietalis were sampled at elective caesarean delivery. Real-time RT-PCR was used to investigate transcription, while immunohistochemistry and western blot analyses were utilized to study protein expression. We found that the expression of Kiss1 (p<0.001), Kiss1R (p<0.05) and MMP9 (p<0.01) were higher in the placenta compared to the placental bed and decidua parietalis. In contrast, the expression of VEGF-A was highest in the placental bed (p<0.001). While VEGFR1 expression was highest in the placenta (p<0.01), the expression of VEGFR2 was highest in the placental bed (p<0.001). Lastly, both PROK1 (p<0.001) and its receptor PROK1R (p<0.001) had highest expression in the placenta. Genes associated with trophoblast invasion were highly expressed in the placenta which could suggest that the influence on invasion capacity may largely be exercised at the fetal level. Furthermore, our findings on angiogenic gene expression profiles suggest that angiogenesis may be regulated by two distinct pathways with the PROK1/PROK1R system specifically mediating angiogenesis in the fetus and VEGFA/VEGFR2 ligand-receptor pair predominantly mediating maternal angiogenesis.
doi:10.1371/journal.pone.0063574
PMCID: PMC3656049  PMID: 23696833
21.  Changes in the Expression of Transcription Factors Involved in Modulating the Expression of EPO-R in Activated Human CD4-Positive Lymphocytes 
PLoS ONE  2013;8(4):e60326.
We have recently described the presence of the erythropoietin receptor (EPO-R) on CD4+ lymphocytes and demonstrated that its expression increases during their activation, reaching a level reported to be typical for erythroid progenitors. This observation suggests that EPO-R expression is modulated during lymphocyte activation, which may be important for the cells’ function. Here we investigated whether the expression of GATA1, GATA3 and Sp1 transcription factors is correlated with the expression of EPO-R in human CD4+ lymphocytes stimulated with monoclonal anti-CD3 antibody. The expression of GATA1, GATA3 and Sp1 transcription factors in CD4+ cells was estimated before and after stimulation with anti-CD3 antibody by Western Blot and flow cytometry. The expression of EPO-R was measured using real-time PCR and flow cytometry. There was no change in the expression of GATA1 and GATA3 in CD4+ lymphocytes after stimulation with anti-CD3 antibody. However, stimulation resulted in the significantly increased expression of the Sp1 factor. CD4+ lymphocytes stimulated with anti-CD3 antibody exhibited an increase in both the expression level of EPOR gene and the number of EPO-R molecules on the cells’ surface, the latter being significantly correlated with the increased expression of Sp1. Sp1 is noted to be the single transcription factor among the ones studied whose level changes as a result of CD4+ lymphocyte stimulation. It seems that Sp1 may significantly affect the number of EPO-R molecules present on the surface of activated CD4+ lymphocytes.
doi:10.1371/journal.pone.0060326
PMCID: PMC3618423  PMID: 23577103
22.  Higher Fetal Insulin Resistance in Chinese Pregnant Women with Gestational Diabetes Mellitus and Correlation with Maternal Insulin Resistance 
PLoS ONE  2013;8(4):e59845.
Objective
The aim of this study was to determine the effect of gestational diabetes mellitus (GDM) on fetal insulin resistance or β-cell function in Chinese pregnant women with GDM.
Measurements
Maternal fasting blood and venous cord blood samples (reflecting fetal condition) were collected in 65 well-controlled Chinese GDM mothers (only given dietary intervention) and 83 control subjects. The insulin, glucose and proinsulin concentrations of both maternal and cord blood samples were measured, and the homeostasis model assessment of insulin resistance (HOMA-IR) and the proinsulin-to-insulin ratios (an indicator of fetal β-cell function) were calculated in maternal and cord blood respectively.
Results
Both maternal and fetal levels of insulin, proinsulin and HOMA-IR but not proinsulin-to-insulin ratios were significantly higher in the GDM group than in the control group (maternal insulin, 24.8 vs. 15.4 µU/mL, P = 0.004, proinsulin, 23.3 vs. 16.2 pmol/L, P = 0.005, and HOMA-IR, 5.5 vs. 3.5, P = 0.041, respectively; fetal: insulin, 15.1 vs. 7.9 µU/mL, P<0.001, proinsulin, 25.8 vs. 15.1 pmol/L, P = 0.015, and HOMA-IR, 2.8 vs. 1.4, P = 0.017, respectively). Fetal HOMA-IR but not proinsulin-to-insulin ratios was significantly correlated to maternal HOMA-IR (r = 0.307, P = 0.019), in the pregnant women with GDM.
Conclusions
Fetal insulin resistance was higher in Chinese pregnant women with GDM than control subjects, and correlated with maternal insulin resistance.
doi:10.1371/journal.pone.0059845
PMCID: PMC3613391  PMID: 23560057
23.  A2A Adenosine Receptors Are Differentially Modulated by Pharmacological Treatments in Rheumatoid Arthritis Patients and Their Stimulation Ameliorates Adjuvant-Induced Arthritis in Rats 
PLoS ONE  2013;8(1):e54195.
A2A adenosine receptors (ARs) play a key role in the inhibition of the inflammatory process. The purpose of this study was to evaluate the modulation of A2AARs in rheumatoid arthritis (RA) patients after different pharmacological treatments and to investigate the effect of A2AAR stimulation in a rat model of arthritis. We investigated A2AAR density and functionality in RA progression by using a longitudinal study in RA patients before and after methotrexate (MTX), anti-TNFα agents or rituximab treatments. A2AARs were analyzed by saturation binding assays in lymphocytes from RA patients throughout the 24-month study timeframe. In an adjuvant-induced arthritis model in rats we showed the efficacy of the A2AAR agonist, CGS 21680 in comparison with standard therapies by means of paw volume assessment, radiographic and ultrasonographic imaging. Arthritic-associated pain was investigated in mechanical allodynia and thermal hyperalgesia tests. IL-10 release following A2AAR stimulation in lymphocytes from RA patients and in serum from arthritic rats was measured. In lymphocytes obtained from RA patients, the A2AAR up-regulation was gradually reduced in function of the treatment time and the stimulation of these receptors mediated a significant increase of IL-10 production. In the same cells, CGS 21680 did not affected cell viability and did not produced cytotoxic effects. The A2AAR agonist CGS 21680 was highly effective, as suggested by the marked reduction of clinical signs, in rat adjuvant-induced arthritis and associated pain. This study highlighted that A2AAR agonists represent a physiological-like therapeutic alternative for RA treatment as suggested by the anti-inflammatory role of A2AARs in lymphocytes from RA patients. The effectiveness of A2AAR stimulation in a rat model of arthritis supported the role of A2AAR agonists as potential pharmacological treatment for RA.
doi:10.1371/journal.pone.0054195
PMCID: PMC3543361  PMID: 23326596
24.  Hydrogen Improves Glycemic Control in Type1 Diabetic Animal Model by Promoting Glucose Uptake into Skeletal Muscle 
PLoS ONE  2013;8(1):e53913.
Hydrogen (H2) acts as a therapeutic antioxidant. However, there are few reports on H2 function in other capacities in diabetes mellitus (DM). Therefore, in this study, we investigated the role of H2 in glucose transport by studying cultured mouse C2C12 cells and human hepatoma Hep-G2 cells in vitro, in addition to three types of diabetic mice [Streptozotocin (STZ)-induced type 1 diabetic mice, high-fat diet-induced type 2 diabetic mice, and genetically diabetic db/db mice] in vivo. The results show that H2 promoted 2-[14C]-deoxy-d-glucose (2-DG) uptake into C2C12 cells via the translocation of glucose transporter Glut4 through activation of phosphatidylinositol-3-OH kinase (PI3K), protein kinase C (PKC), and AMP-activated protein kinase (AMPK), although it did not stimulate the translocation of Glut2 in Hep G2 cells. H2 significantly increased skeletal muscle membrane Glut4 expression and markedly improved glycemic control in STZ-induced type 1 diabetic mice after chronic intraperitoneal (i.p.) and oral (p.o.) administration. However, long-term p.o. administration of H2 had least effect on the obese and non-insulin-dependent type 2 diabetes mouse models. Our study demonstrates that H2 exerts metabolic effects similar to those of insulin and may be a novel therapeutic alternative to insulin in type 1 diabetes mellitus that can be administered orally.
doi:10.1371/journal.pone.0053913
PMCID: PMC3542317  PMID: 23326534
25.  The Role of Insulin C-Peptide in the Coevolution Analyses of the Insulin Signaling Pathway: A Hint for Its Functions 
PLoS ONE  2012;7(12):e52847.
As the linker between the A chain and B chain of proinsulin, C-peptide displays high variability in length and amino acid composition, and has been considered as an inert byproduct of insulin synthesis and processing for many years. Recent studies have suggested that C-peptide can act as a bioactive hormone, exerting various biological effects on the pathophysiology and treatment of diabetes. In this study, we analyzed the coevolution of insulin molecules among vertebrates, aiming at exploring the evolutionary characteristics of insulin molecule, especially the C-peptide. We also calculated the correlations of evolutionary rates between the insulin and the insulin receptor (IR) sequences as well as the domain-domain pairs of the ligand and receptor by the mirrortree method. The results revealed distinctive features of C-peptide in insulin intramolecular coevolution and correlated residue substitutions, which partly supported the idea that C-peptide can act as a bioactive hormone, with significant sequence features, as well as a linker assisting the formation of mature insulin during synthesis. Interestingly, the evolution of C-peptide exerted the highest correlation with that of the insulin receptor and its ligand binding domain (LBD), implying a potential relationship with the insulin signaling pathway.
doi:10.1371/journal.pone.0052847
PMCID: PMC3531361  PMID: 23300796

Results 1-25 (38)