PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-14 (14)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Phosphite-induced changes of the transcriptome and secretome in Solanum tuberosum leading to resistance against Phytophthora infestans 
BMC Plant Biology  2014;14(1):254.
Background
Potato late blight caused by the oomycete pathogen Phytophthora infestans can lead to immense yield loss. We investigated the transcriptome of Solanum tubersoum (cv. Desiree) and characterized the secretome by quantitative proteomics after foliar application of the protective agent phosphite. We also studied the distribution of phosphite in planta after application and tested transgenic potato lines with impaired in salicylic and jasmonic acid signaling.
Results
Phosphite had a rapid and transient effect on the transcriptome, with a clear response 3 h after treatment. Strikingly this effect lasted less than 24 h, whereas protection was observed throughout all time points tested. In contrast, 67 secretome proteins predominantly associated with cell-wall processes and defense changed in abundance at 48 h after treatment. Transcripts associated with defense, wounding, and oxidative stress constituted the core of the phosphite response. We also observed changes in primary metabolism and cell wall-related processes. These changes were shown not to be due to phosphate depletion or acidification caused by phosphite treatment. Of the phosphite-regulated transcripts 40% also changed with β-aminobutyric acid (BABA) as an elicitor, while the defence gene PR1 was only up-regulated by BABA. Although phosphite was shown to be distributed in planta to parts not directly exposed to phosphite, no protection in leaves without direct foliar application was observed. Furthermore, the analysis of transgenic potato lines indicated that the phosphite-mediated resistance was independent of the plant hormones salicylic and jasmonic acid.
Conclusions
Our study suggests that a rapid phosphite-triggered response is important to confer long-lasting resistance against P. infestans and gives molecular understanding of its successful field applications.
Electronic supplementary material
The online version of this article (doi:10.1186/s12870-014-0254-y) contains supplementary material, which is available to authorized users.
doi:10.1186/s12870-014-0254-y
PMCID: PMC4192290  PMID: 25270759
Phosphite; Late blight; Phytophthora infestans; Potato; Secretome; Microarray; Induced resistance; Transgenic lines
2.  Quantitative proteomics and transcriptomics of potato in response to Phytophthora infestans in compatible and incompatible interactions 
BMC Genomics  2014;15(1):497.
Background
In order to get global molecular understanding of one of the most important crop diseases worldwide, we investigated compatible and incompatible interactions between Phytophthora infestans and potato (Solanum tuberosum). We used the two most field-resistant potato clones under Swedish growing conditions, which have the greatest known local diversity of P. infestans populations, and a reference compatible cultivar.
Results
Quantitative label-free proteomics of 51 apoplastic secretome samples (PXD000435) in combination with genome-wide transcript analysis by 42 microarrays (E-MTAB-1515) were used to capture changes in protein abundance and gene expression at 6, 24 and 72 hours after inoculation with P. infestans. To aid mass spectrometry analysis we generated cultivar-specific RNA-seq data (E-MTAB-1712), which increased peptide identifications by 17%. Components induced only during incompatible interactions, which are candidates for hypersensitive response initiation, include a Kunitz-like protease inhibitor, transcription factors and an RCR3-like protein. More secreted proteins had lower abundance in the compatible interaction compared to the incompatible interactions. Based on this observation and because the well-characterized effector-target C14 protease follows this pattern, we suggest 40 putative effector targets.
Conclusions
In summary, over 17000 transcripts and 1000 secreted proteins changed in abundance in at least one time point, illustrating the dynamics of plant responses to a hemibiotroph. Half of the differentially abundant proteins showed a corresponding change at the transcript level. Many putative hypersensitive and effector-target proteins were single representatives of large gene families.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-497) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-15-497
PMCID: PMC4079953  PMID: 24947944
Potato; Desiree; Sarpo Mira; SW93-1015; Secretome; Apoplast; Resistance; Hypersensitive response; Phytophthora infestans
3.  Proteomics and transcriptomics of the BABA-induced resistance response in potato using a novel functional annotation approach 
BMC Genomics  2014;15:315.
Background
Induced resistance (IR) can be part of a sustainable plant protection strategy against important plant diseases. β-aminobutyric acid (BABA) can induce resistance in a wide range of plants against several types of pathogens, including potato infected with Phytophthora infestans. However, the molecular mechanisms behind this are unclear and seem to be dependent on the system studied. To elucidate the defence responses activated by BABA in potato, a genome-wide transcript microarray analysis in combination with label-free quantitative proteomics analysis of the apoplast secretome were performed two days after treatment of the leaf canopy with BABA at two concentrations, 1 and 10 mM.
Results
Over 5000 transcripts were differentially expressed and over 90 secretome proteins changed in abundance indicating a massive activation of defence mechanisms with 10 mM BABA, the concentration effective against late blight disease. To aid analysis, we present a more comprehensive functional annotation of the microarray probes and gene models by retrieving information from orthologous gene families across 26 sequenced plant genomes. The new annotation provided GO terms to 8616 previously un-annotated probes.
Conclusions
BABA at 10 mM affected several processes related to plant hormones and amino acid metabolism. A major accumulation of PR proteins was also evident, and in the mevalonate pathway, genes involved in sterol biosynthesis were down-regulated, whereas several enzymes involved in the sesquiterpene phytoalexin biosynthesis were up-regulated. Interestingly, abscisic acid (ABA) responsive genes were not as clearly regulated by BABA in potato as previously reported in Arabidopsis. Together these findings provide candidates and markers for improved resistance in potato, one of the most important crops in the world.
doi:10.1186/1471-2164-15-315
PMCID: PMC4234511  PMID: 24773703
Functional annotation; Mevalonate pathway; Phytophthora infestans; Secretome; Solanum tuberosum; Sterol biosynthesis
4.  Proteome of the Nematode-Trapping Cells of the Fungus Monacrosporium haptotylum 
Applied and Environmental Microbiology  2013;79(16):4993-5004.
Many nematophagous fungi use morphological structures called traps to capture nematodes by adhesion or mechanically. To better understand the cellular functions of adhesive traps, the trap cell proteome of the fungus Monacrosporium haptotylum was characterized. The trap of M. haptotylum consists of a unicellular structure called a knob that develops at the apex of a hypha. Proteins extracted from knobs and mycelia were analyzed using SDS-PAGE and liquid chromatography-tandem mass spectrometry (LC–MS-MS). The peptide sequences were matched against predicted gene models from the recently sequenced M. haptotylum genome. In total, 336 proteins were identified, with 54 expressed at significantly higher levels in the knobs than in the mycelia. The upregulated knob proteins included peptidases, small secreted proteins with unknown functions, and putative cell surface adhesins containing carbohydrate-binding domains, including the WSC domain. Phylogenetic analysis showed that all upregulated WSC domain proteins belonged to a large, expanded cluster of paralogs in M. haptotylum. Several peptidases and homologs of experimentally verified proteins in other pathogenic fungi were also upregulated in the knob proteome. Complementary profiling of gene expression at the transcriptome level showed poor correlation between the upregulation of knob proteins and their corresponding transcripts. We propose that the traps of M. haptotylum contain many of the proteins needed in the early stages of infection and that the trap cells can tightly control the translation and degradation of these proteins to minimize the cost of protein synthesis.
doi:10.1128/AEM.01390-13
PMCID: PMC3754708  PMID: 23770896
5.  The HUPO proteomics standards initiative- mass spectrometry controlled vocabulary 
Controlled vocabularies (CVs), i.e. a collection of predefined terms describing a modeling domain, used for the semantic annotation of data, and ontologies are used in structured data formats and databases to avoid inconsistencies in annotation, to have a unique (and preferably short) accession number and to give researchers and computer algorithms the possibility for more expressive semantic annotation of data. The Human Proteome Organization (HUPO)–Proteomics Standards Initiative (PSI) makes extensive use of ontologies/CVs in their data formats. The PSI-Mass Spectrometry (MS) CV contains all the terms used in the PSI MS–related data standards. The CV contains a logical hierarchical structure to ensure ease of maintenance and the development of software that makes use of complex semantics. The CV contains terms required for a complete description of an MS analysis pipeline used in proteomics, including sample labeling, digestion enzymes, instrumentation parts and parameters, software used for identification and quantification of peptides/proteins and the parameters and scores used to determine their significance. Owing to the range of topics covered by the CV, collaborative development across several PSI working groups, including proteomics research groups, instrument manufacturers and software vendors, was necessary. In this article, we describe the overall structure of the CV, the process by which it has been developed and is maintained and the dependencies on other ontologies.
Database URL: http://psidev.cvs.sourceforge.net/viewvc/psidev/psi/psi-ms/mzML/controlledVocabulary/psi-ms.obo
doi:10.1093/database/bat009
PMCID: PMC3594986  PMID: 23482073
6.  Paranoid potato 
Plant Signaling & Behavior  2012;7(3):400-408.
Phytophthora is the most devastating pathogen of dicot plants. There is a need for resistance sources with different modes of action to counteract the fast evolution of this pathogen. In order to better understand mechanisms of defense against P. infestans, we analyzed several clones of potato. Two of the genotypes tested, Sarpo Mira and SW93-1015, exhibited strong resistance against P. infestans in field trials, whole plant assays and detached leaf assays. The resistant genotypes developed different sizes of hypersensitive response (HR)-related lesions. HR lesions in SW93-1015 were restricted to very small areas, whereas those in Sarpo Mira were similar to those in Solanum demissum, the main source of classical resistance genes. SW93-1015 can be characterized as a cpr (constitutive expressor of PR genes) genotype without spontaneous microscopic or macroscopic HR lesions. This is indicated by constitutive hydrogen peroxide (H2O2) production and PR1 (pathogenesis-related protein 1) secretion. SW93-1015 is one of the first plants identified as having classical protein-based induced defense expressed constitutively without any obvious metabolic costs or spontaneous cell death lesions.
doi:10.4161/psb.19149
PMCID: PMC3443922  PMID: 22476463
Phytophthora infestans; PR proteins; cell death; constitutive defence; cpr; hypersensitive response; late blight; plant-pathogen interaction; potato; resistance
7.  TraML—A Standard Format for Exchange of Selected Reaction Monitoring Transition Lists* 
Molecular & Cellular Proteomics : MCP  2011;11(4):R111.015040.
Targeted proteomics via selected reaction monitoring is a powerful mass spectrometric technique affording higher dynamic range, increased specificity and lower limits of detection than other shotgun mass spectrometry methods when applied to proteome analyses. However, it involves selective measurement of predetermined analytes, which requires more preparation in the form of selecting appropriate signatures for the proteins and peptides that are to be targeted. There is a growing number of software programs and resources for selecting optimal transitions and the instrument settings used for the detection and quantification of the targeted peptides, but the exchange of this information is hindered by a lack of a standard format. We have developed a new standardized format, called TraML, for encoding transition lists and associated metadata. In addition to introducing the TraML format, we demonstrate several implementations across the community, and provide semantic validators, extensive documentation, and multiple example instances to demonstrate correctly written documents. Widespread use of TraML will facilitate the exchange of transitions, reduce time spent handling incompatible list formats, increase the reusability of previously optimized transitions, and thus accelerate the widespread adoption of targeted proteomics via selected reaction monitoring.
doi:10.1074/mcp.R111.015040
PMCID: PMC3322582  PMID: 22159873
8.  mzML—a Community Standard for Mass Spectrometry Data* 
Molecular & Cellular Proteomics : MCP  2010;10(1):R110.000133.
Mass spectrometry is a fundamental tool for discovery and analysis in the life sciences. With the rapid advances in mass spectrometry technology and methods, it has become imperative to provide a standard output format for mass spectrometry data that will facilitate data sharing and analysis. Initially, the efforts to develop a standard format for mass spectrometry data resulted in multiple formats, each designed with a different underlying philosophy. To resolve the issues associated with having multiple formats, vendors, researchers, and software developers convened under the banner of the HUPO PSI to develop a single standard. The new data format incorporated many of the desirable technical attributes from the previous data formats, while adding a number of improvements, including features such as a controlled vocabulary with validation tools to ensure consistent usage of the format, improved support for selected reaction monitoring data, and immediately available implementations to facilitate rapid adoption by the community. The resulting standard data format, mzML, is a well tested open-source format for mass spectrometer output files that can be readily utilized by the community and easily adapted for incremental advances in mass spectrometry technology.
doi:10.1074/mcp.R110.000133
PMCID: PMC3013463  PMID: 20716697
9.  Improved Label-Free LC-MS Analysis by Wavelet-Based Noise Rejection 
Label-free LC-MS analysis allows determining the differential expression level of proteins in multiple samples, without the use of stable isotopes. This technique is based on the direct comparison of multiple runs, obtained by continuous detection in MS mode. Only differentially expressed peptides are selected for further fragmentation, thus avoiding the bias toward abundant peptides typical of data-dependent tandem MS. The computational framework includes detection, alignment, normalization and matching of peaks across multiple sets, and several software packages are available to address these processing steps. Yet, more care should be taken to improve the quality of the LC-MS maps entering the pipeline, as this parameter severely affects the results of all downstream analyses. In this paper we show how the inclusion of a preprocessing step of background subtraction in a common laboratory pipeline can lead to an enhanced inclusion list of peptides selected for fragmentation and consequently to better protein identification.
doi:10.1155/2010/131505
PMCID: PMC2817556  PMID: 20150965
10.  Enhanced Exopolysaccharide Production by Metabolic Engineering of Streptococcus thermophilus 
It is possible that the low levels of production of exopolysaccharides (EPSs) by lactic acid bacteria could be improved by altering the levels of enzymes in the central metabolism that influence the production of precursor nucleotide sugars. To test this hypothesis, we identified and cloned the galU gene, which codes for UDP glucose pyrophosphorylase (GalU) in Streptococcus thermophilus LY03. Homologous overexpression of the gene led to a 10-fold increase in GalU activity but did not have any effect on the EPS yield when lactose was the carbon source. However, when galU was overexpressed in combination with pgmA, which encodes phosphoglucomutase (PGM), the EPS yield increased from 0.17 to 0.31 g/mol of carbon from lactose. A galactose-fermenting LY03 mutant (Gal+) with increased activities of the Leloir enzymes was also found to have a higher EPS yield (0.24 g/mol of carbon) than the parent strain. The EPS yield was further improved to 0.27 g/mol of carbon by overexpressing galU in this strain. However, the highest EPS yield, 0.36 g/mol of carbon, was obtained when pgmA was knocked out in the Gal+ strain. Measurements of the levels of intracellular metabolites in the cultures revealed that the Gal+ strains had considerably higher glucose 1-phosphate levels than the other strains, and the strain lacking PGM activity had threefold-higher levels of glucose 1-phosphate than the other Gal+ strains. These results show that it is possible to increase EPS production by altering the levels of enzymes in the central carbohydrate metabolism.
doi:10.1128/AEM.68.2.784-790.2002
PMCID: PMC126717  PMID: 11823219
11.  Physiological Role of β-Phosphoglucomutase in Lactococcus lactis 
Applied and Environmental Microbiology  2001;67(10):4546-4553.
A β-phosphoglucomutase (β-PGM) mutant of Lactococcus lactis subsp. lactis ATCC 19435 was constructed using a minimal integration vector and double-crossover recombination. The mutant and the wild-type strain were grown under controlled conditions with different sugars to elucidate the role of β-PGM in carbohydrate catabolism and anabolism. The mutation did not significantly affect growth, product formation, or cell composition when glucose or lactose was used as the carbon source. With maltose or trehalose as the carbon source the wild-type strain had a maximum specific growth rate of 0.5 h−1, while the deletion of β-PGM resulted in a maximum specific growth rate of 0.05 h−1 on maltose and no growth at all on trehalose. Growth of the mutant strain on maltose resulted in smaller amounts of lactate but more formate, acetate, and ethanol, and approximately 1/10 of the maltose was found as β-glucose 1-phosphate in the medium. Furthermore, the β-PGM mutant cells grown on maltose were considerably larger and accumulated polysaccharides which consisted of α-1,4-bound glucose units. When the cells were grown at a low dilution rate in a glucose and maltose mixture, the wild-type strain exhibited a higher carbohydrate content than when grown at higher growth rates, but still this content was lower than that in the β-PGM mutant. In addition, significant differences in the initial metabolism of maltose and trehalose were found, and cell extracts did not digest free trehalose but only trehalose 6-phosphate, which yielded β-glucose 1-phosphate and glucose 6-phosphate. This demonstrates the presence of a novel enzymatic pathway for trehalose different from that of maltose metabolism in L. lactis.
doi:10.1128/AEM.67.10.4546-4553.2001
PMCID: PMC93201  PMID: 11571154
12.  Small-scale analysis of exopolysaccharides from Streptococcus thermophilus grown in a semi-defined medium 
BMC Microbiology  2001;1:23.
Background
Exopolysaccharides (EPSs) produced by lactic acid bacteria are important for the texture of fermented foods and have received a great deal of interest recently. However, the low production levels of EPSs in combination with the complex media used for growth of the bacteria have caused problems in the accurate analysis of the EPS. The purpose of this study was to find a growth medium for physiological studies of the lactic acid bacterium Streptococcus thermophilus, and to develop a simple method for qualitative and quantitative analysis of EPSs produced in this medium.
Results
A semi-defined polysaccharide medium was developed and evaluated on six strains of Streptococcus thermophilus. The EPSs were analysed using a novel protocol incorporating ultracentrifugation for the removal of interfering sugars, hydrolysis and analysis of the monomer composition by High Performance Anion-Exchange Chromatography with pulsed amperometric detection. The medium and analysis method allowed accurate quantification and monomer analysis of 0.5 ml samples of EPSs from tube cultures.
Conclusions
The presented medium should be useful for physiological studies of S. thermophilus, and, in combination with the method of analysis of EPS, will allow downscaling of physiological studies and screening for EPSs.
PMCID: PMC57807  PMID: 11602017
13.  Requirement for Phosphoglucomutase in Exopolysaccharide Biosynthesis in Glucose- and Lactose-Utilizing Streptococcus thermophilus 
To study the influence of phosphoglucomutase (PGM) activity on exopolysaccharide (EPS) synthesis in glucose- and lactose-growing Streptococcus thermophilus, a knockout PGM mutant and a strain with elevated PGM activity were constructed. The pgmA gene, encoding PGM in S. thermophilus LY03, was identified and cloned. The gene was functional in Escherichia coli and was shown to be expressed from its own promoter. The pgmA-deficient mutant was unable to grow on glucose, while the mutation did not affect growth on lactose. Overexpression of pgmA had no significant effect on EPS production in glucose-growing cells. Neither deletion nor overexpression of pgmA changed the growth or EPS production on lactose. Thus, the EPS precursors in lactose-utilizing S. thermophilus are most probably formed from the galactose moiety of lactose via the Leloir pathway, which circumvents the need for a functional PGM.
doi:10.1128/AEM.67.6.2734-2738.2001
PMCID: PMC92932  PMID: 11375188
14.  Automated Selected Reaction Monitoring Software for Accurate Label-Free Protein Quantification 
Journal of Proteome Research  2012;11(7):3766-3773.
Selected reaction monitoring (SRM) is a mass spectrometry method with documented ability to quantify proteins accurately and reproducibly using labeled reference peptides. However, the use of labeled reference peptides becomes impractical if large numbers of peptides are targeted and when high flexibility is desired when selecting peptides. We have developed a label-free quantitative SRM workflow that relies on a new automated algorithm, Anubis, for accurate peak detection. Anubis efficiently removes interfering signals from contaminating peptides to estimate the true signal of the targeted peptides. We evaluated the algorithm on a published multisite data set and achieved results in line with manual data analysis. In complex peptide mixtures from whole proteome digests of Streptococcus pyogenes we achieved a technical variability across the entire proteome abundance range of 6.5–19.2%, which was considerably below the total variation across biological samples. Our results show that the label-free SRM workflow with automated data analysis is feasible for large-scale biological studies, opening up new possibilities for quantitative proteomics and systems biology.
doi:10.1021/pr300256x
PMCID: PMC3426189  PMID: 22658081
targeted proteomics; mass spectrometry; selected reaction monitoring; label-free; software; quantification; Streptococcus pyogenes

Results 1-14 (14)