PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65 
Biochemical Journal  2014;460(Pt 1):127-139.
We have previously reported that the Parkinson's disease-associated kinase PINK1 (PTEN-induced putative kinase 1) is activated by mitochondrial depolarization and stimulates the Parkin E3 ligase by phosphorylating Ser65 within its Ubl (ubiquitin-like) domain. Using phosphoproteomic analysis, we identified a novel ubiquitin phosphopeptide phosphorylated at Ser65 that was enriched 14-fold in HEK (human embryonic kidney)-293 cells overexpressing wild-type PINK1 stimulated with the mitochondrial uncoupling agent CCCP (carbonyl cyanide m-chlorophenylhydrazone), to activate PINK1, compared with cells expressing kinase-inactive PINK1. Ser65 in ubiquitin lies in a similar motif to Ser65 in the Ubl domain of Parkin. Remarkably, PINK1 directly phosphorylates Ser65 of ubiquitin in vitro. We undertook a series of experiments that provide striking evidence that Ser65-phosphorylated ubiquitin (ubiquitinPhospho−Ser65) functions as a critical activator of Parkin. First, we demonstrate that a fragment of Parkin lacking the Ubl domain encompassing Ser65 (ΔUbl-Parkin) is robustly activated by ubiquitinPhospho−Ser65, but not by non-phosphorylated ubiquitin. Secondly, we find that the isolated Parkin Ubl domain phosphorylated at Ser65 (UblPhospho−Ser65) can also activate ΔUbl-Parkin similarly to ubiquitinPhospho−Ser65. Thirdly, we establish that ubiquitinPhospho−Ser65, but not non-phosphorylated ubiquitin or UblPhospho−Ser65, activates full-length wild-type Parkin as well as the non-phosphorylatable S65A Parkin mutant. Fourthly, we provide evidence that optimal activation of full-length Parkin E3 ligase is dependent on PINK1-mediated phosphorylation of both Parkin at Ser65 and ubiquitin at Ser65, since only mutation of both proteins at Ser65 completely abolishes Parkin activation. In conclusion, the findings of the present study reveal that PINK1 controls Parkin E3 ligase activity not only by phosphorylating Parkin at Ser65, but also by phosphorylating ubiquitin at Ser65. We propose that phosphorylation of Parkin at Ser65 serves to prime the E3 ligase enzyme for activation by ubiquitinPhospho−Ser65, suggesting that small molecules that mimic ubiquitinPhospho−Ser65 could hold promise as novel therapies for Parkinson's disease.
We describe a novel and unexpected mechanism by which PINK1 protein kinase activates Parkin E3 ligase. We show that PINK1 phosphorylates ubiquitin at Ser65 and that phosphorylated ubiquitin acts as a direct activator of Parkin.
doi:10.1042/BJ20140334
PMCID: PMC4000136  PMID: 24660806
Parkin; Parkinson’s disease; phosphorylation; PTEN (phosphatase and tensin homologue deleted on chromosome 10)-induced putative kinase 1 (PINK1); ubiquitin; CCCP, carbonyl cyanide m-chlorophenylhydrazone; CDK2, cyclin-dependent kinase 2; GSK3β, glycogen synthase kinase-3β; HEK, human embryonic kidney; HOIL1, haem-oxidized IRP2 (iron-regulatory protein 2) ubiquitin ligase 1; HRP, horseradish peroxidase; IKK, IκB (inhibitor of nuclear factor κB) kinase; ISG15, interferon-induced 17 kDa protein; MBP, maltose-binding protein; MLK1, mixed lineage kinase 1; Nedd8, neural-precursor-cell-expressed developmentally down-regulated 8; Ni-NTA, Ni2+-nitrilotriacetate; NUAK1, NUAK family SNF1-like kinase 1; OTU1, OTU (ovarian tumour) domain-containing protein 1; PD, Parkinson’s disease; PINK1, PTEN (phosphatase and tensin homologue deleted on chromosome 10)-induced putative kinase 1; PLK1, Polo-like kinase 1; SILAC, stable isotope labelling by amino acids in cell culture; SUMO, small ubiquitin-related modifier; TCEP, tris-(2-carboxyethyl)phosphine; TcPINK1, Tribolium castaneum PINK1; Ubl, ubiquitin-like
2.  TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin-RING ligase complexes 
The EMBO Journal  2013;32(21):2848-2860.
RING (Really Interesting New Gene)-in-between-RING (RBR) enzymes are a distinct class of E3 ubiquitin ligases possessing a cluster of three zinc-binding domains that cooperate to catalyse ubiquitin transfer. The regulation and biological function for most members of the RBR ligases is not known, and all RBR E3s characterized to date are auto-inhibited for in vitro ubiquitylation. Here, we show that TRIAD1 and HHARI, two members of the Ariadne subfamily ligases, associate with distinct neddylated Cullin-RING ligase (CRL) complexes. In comparison to the modest E3 ligase activity displayed by isolated TRIAD1 or HHARI, binding of the cognate neddylated CRL to TRIAD1 or HHARI greatly stimulates RBR ligase activity in vitro, as determined by auto-ubiquitylation, their ability to stimulate dissociation of a thioester-linked UBCH7∼ubiquitin intermediate, and reactivity with ubiquitin-vinyl methyl ester. Moreover, genetic evidence shows that RBR ligase activity impacts both the levels and activities of neddylated CRLs in vivo. Cumulatively, our work proposes a conserved mechanism of CRL-induced Ariadne RBR ligase activation and further suggests a reciprocal role of this special class of RBRs as regulators of distinct CRLs.
TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin-RING ligase complexes
Ubiquitin ligases of the distinct Cullin-RING ligase (CRL) and RING-between-RING (RBR) families physically and functionally interact, suggesting how RBR ligase auto-inhibition may be relieved in Ariadne-subfamily members.
doi:10.1038/emboj.2013.209
PMCID: PMC3817463  PMID: 24076655
auto-inhibition; Cullin-RING ligases; HHARI; RBR E3 ubiquitin ligases; TRIAD1
3.  The anti-inflammatory drug BAY 11-7082 suppresses the MyD88-dependent signalling network by targeting the ubiquitin system 
Biochemical Journal  2013;451(Pt 3):427-437.
The compound BAY 11-7082 inhibits IκBα [inhibitor of NF-κB (nuclear factor κB)α] phosphorylation in cells and has been used to implicate the canonical IKKs (IκB kinases) and NF-κB in >350 publications. In the present study we report that BAY 11-7082 does not inhibit the IKKs, but suppresses their activation in LPS (lipopolysaccharide)-stimulated RAW macrophages and IL (interleukin)-1-stimulated IL-1R (IL-1 receptor) HEK (human embryonic kidney)-293 cells. BAY 11-7082 exerts these effects by inactivating the E2-conjugating enzymes Ubc (ubiquitin conjugating) 13 and UbcH7 and the E3 ligase LUBAC (linear ubiquitin assembly complex), thereby preventing the formation of Lys63-linked and linear polyubiquitin chains. BAY 11-7082 prevents ubiquitin conjugation to Ubc13 and UbcH7 by forming a covalent adduct with their reactive cysteine residues via Michael addition at the C3 atom of BAY 11-7082, followed by the release of 4-methylbenzene-sulfinic acid. BAY 11-7082 stimulated Lys48-linked polyubiquitin chain formation in cells and protected HIF1α (hypoxia-inducible factor 1α) from proteasomal degradation, suggesting that it inhibits the proteasome. The results of the present study indicate that the anti-inflammatory effects of BAY 11-7082, its ability to induce B-cell lymphoma and leukaemic T-cell death and to prevent the recruitment of proteins to sites of DNA damage are exerted via inhibition of components of the ubiquitin system and not by inhibiting NF-κB.
doi:10.1042/BJ20121651
PMCID: PMC3685219  PMID: 23441730
lymphoma; linear ubiquitin assembly complex (LUBAC); myeloid differentiation factor 88 (MyD88); nuclear factor κB (NF-κB); proteasome; ubiquitin conjugating 13 (Ubc13); DAPI, 4′,6-diamidino-2-phenylindole; DLBCL, diffuse large B-cell lymphoma; DMEM, Dulbecco’s modified Eagle’s medium; ERK, extracellular-signal-regulated kinase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GFP, green fluorescent protein; HEK, human embryonic kidney; HIF1α, hypoxia-inducible factor 1α; HOIP, haem-oxidized IRP2 ligase-1-interacting protein; HRMS, high-resolution mass spectra; HTLV-1, human T-cell lymphotropic virus 1; IL, interleukin; IL-1R, IL-1 receptor; IRAK, IL-receptor-associated kinase; IκB, inhibitor of NF-κB; IKK, IκB kinase; JNK, c-Jun N-terminal kinase; K48-pUb, Lys48-linked polyubiquitin; K63-pUb, Lys63-linked polyubiquitin; LPS, lipopolysaccharide; LUBAC, linear ubiquitin assembly complex; MALDI–TOF, matrix-assisted laser-desorption ionization–time-of-flight; MAPK, mitogen-activated protein kinase; MS/MS, tandem MS; MyD88, myeloid differentiation factor 88; NEDD8, neural-precursor-cell-expressed developmentally down-regulated 8; NEMO, NF-κB essential modifier; NF-κB, nuclear factor κB; PAMP, pathogen-associated molecular pattern; pUb, polyubiquitin; RBR, RING-between-RING, TAB, TAK1-binding protein; TAK1, transforming growth factor β-activated kinase 1; TBK1, tumour-necrosis-factor-receptor-associated factor-associated NF-κB activator-binding kinase 1; TRAF, tumour-necrosis-factor-receptor-associated factor; Ubc, ubiquitin conjugating; UBE, ubiquitin-activating enzyme
4.  The CUL3–KLHL3 E3 ligase complex mutated in Gordon's hypertension syndrome interacts with and ubiquitylates WNK isoforms: disease-causing mutations in KLHL3 and WNK4 disrupt interaction 
Biochemical Journal  2013;451(Pt 1):111-122.
The WNK (with no lysine kinase)–SPAK (SPS1-related proline/alanine-rich kinase)/OSR1 (oxidative stress-responsive kinase 1) signalling pathway plays an important role in controlling mammalian blood pressure by modulating the activity of ion co-transporters in the kidney. Recent studies have identified Gordon's hypertension syndrome patients with mutations in either CUL3 (Cullin-3) or the BTB protein KLHL3 (Kelch-like 3). CUL3 assembles with BTB proteins to form Cullin–RING E3 ubiquitin ligase complexes. To explore how a CUL3–KLHL3 complex might operate, we immunoprecipitated KLHL3 and found that it associated strongly with WNK isoforms and CUL3, but not with other components of the pathway [SPAK/OSR1 or NCC (Na+/Cl− co-transporter)/NKCC1 (Na+/K+/2Cl− co-transporter 1)]. Strikingly, 13 out of the 15 dominant KLHL3 disease mutations analysed inhibited binding to WNK1 or CUL3. The recombinant wild-type CUL3–KLHL3 E3 ligase complex, but not a disease-causing CUL3–KLHL3[R528H] mutant complex, ubiquitylated WNK1 in vitro. Moreover, siRNA (small interfering RNA)-mediated knockdown of CUL3 increased WNK1 protein levels and kinase activity in HeLa cells. We mapped the KLHL3 interaction site in WNK1 to a non-catalytic region (residues 479–667). Interestingly, the equivalent region in WNK4 encompasses residues that are mutated in Gordon's syndrome patients. Strikingly, we found that the Gordon's disease-causing WNK4[E562K] and WNK4[Q565E] mutations, as well as the equivalent mutation in the WNK1[479–667] fragment, abolished the ability to interact with KLHL3. These results suggest that the CUL3–KLHL3 E3 ligase complex regulates blood pressure via its ability to interact with and ubiquitylate WNK isoforms. The findings of the present study also emphasize that the missense mutations in WNK4 that cause Gordon's syndrome strongly inhibit interaction with KLHL3. This could elevate blood pressure by increasing the expression of WNK4 thereby stimulating inappropriate salt retention in the kidney by promoting activation of the NCC/NKCC2 ion co-transporters. The present study reveals how mutations that disrupt the ability of an E3 ligase to interact with and ubiquitylate a critical cellular substrate such as WNK isoforms can trigger a chronic disease such as hypertension.
doi:10.1042/BJ20121903
PMCID: PMC3632089  PMID: 23387299
BTB domain; Cullin–RING E3 ligase (CRL); Kelch-like domain (KLHL domain); Na+/Cl− co-transporter (NCC); Na+/K+/2Cl− co-transporter 2 (NKCC2); SPS1-related proline/alanine-rich kinase/oxidative stress-responsive kinase 1 (SPAK/OSR1); ubiquitin; CUL3, Cullin-3; CRL, Cullin–RING E3 ligase; DCT, distal convoluted tubule; DTT, dithiothreitol; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GFP, green fluorescent protein; GST, glutathione transferase; HEK, human embryonic kidney; HRP, horseradish peroxidase; KEAP1, Kelch-like ECH-associated protein 1; KLHL3, Kelch-like 3; LC, liquid chromatography; NCC, Na+/Cl− co-transporter; NKCC, Na+/K+/2Cl− co-transporter; NRF2, NF-E2-related factor 2; OSR1, oxidative stress-responsive kinase 1; qRT-PCR, real time quantitative reverse transcription PCR; RBX1, RING-box 1, E3 ubiquitin protein ligase; RPL13A, ribosomal protein L13a; RT, reverse transcription; rTEV, recombinant tobacco etch virus; siRNA, small interfering RNA; SPAK, SPS1-related proline/alanine-rich kinase; TAL, thick ascending limb; TTBS, Tris-buffered saline containing Tween 20; UBE1, ubiquitin-like modifier-activating enzyme 1; UBE2D3, ubiquitin-conjugating enzyme E2 D3; WNK, with no lysine kinase
5.  PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65 
Open Biology  2012;2(5):120080.
Summary
Missense mutations in PTEN-induced kinase 1 (PINK1) cause autosomal-recessive inherited Parkinson's disease (PD). We have exploited our recent discovery that recombinant insect PINK1 is catalytically active to test whether PINK1 directly phosphorylates 15 proteins encoded by PD-associated genes as well as proteins reported to bind PINK1. We have discovered that insect PINK1 efficiently phosphorylates only one of these proteins, namely the E3 ligase Parkin. We have mapped the phosphorylation site to a highly conserved residue within the Ubl domain of Parkin at Ser65. We show that human PINK1 is specifically activated by mitochondrial membrane potential (Δψm) depolarization, enabling it to phosphorylate Parkin at Ser65. We further show that phosphorylation of Parkin at Ser65 leads to marked activation of its E3 ligase activity that is prevented by mutation of Ser65 or inactivation of PINK1. We provide evidence that once activated, PINK1 autophosphorylates at several residues, including Thr257, which is accompanied by an electrophoretic mobility band-shift. These results provide the first evidence that PINK1 is activated following Δψm depolarization and suggest that PINK1 directly phosphorylates and activates Parkin. Our findings indicate that monitoring phosphorylation of Parkin at Ser65 and/or PINK1 at Thr257 represent the first biomarkers for examining activity of the PINK1-Parkin signalling pathway in vivo. Our findings also suggest that small molecule activators of Parkin that mimic the effect of PINK1 phosphorylation may confer therapeutic benefit for PD.
doi:10.1098/rsob.120080
PMCID: PMC3376738  PMID: 22724072
PINK1; Parkin; Parkinson's disease
6.  UBXN7 docks on neddylated cullin complexes using its UIM motif and causes HIF1α accumulation 
BMC Biology  2012;10:36.
Background
The proteins from the UBA-UBX family interact with ubiquitylated proteins via their UBA domain and with p97 via their UBX domain, thereby acting as substrate-binding adaptors for the p97 ATPase. In particular, human UBXN7 (also known as UBXD7) mediates p97 interaction with the transcription factor HIF1α that is actively ubiquitylated in normoxic cells by a CUL2-based E3 ligase, CRL2. Mass spectrometry analysis of UBA-UBX protein immunoprecipitates showed that they interact with a multitude of E3 ubiquitin-ligases. Conspicuously, UBXN7 was most proficient in interacting with cullin-RING ligase subunits. We therefore set out to determine whether UBXN7 interaction with cullins was direct or mediated by its ubiquitylated targets bound to the UBA domain.
Results
We show that UBXN7 interaction with cullins is independent of ubiquitin- and substrate-binding. Instead, it relies on the UIM motif in UBXN7 that directly engages the NEDD8 modification on cullins. To understand the functional consequences of UBXN7 interaction with neddylated cullins, we focused on HIF1α, a CUL2 substrate that uses UBXD7/p97 as a ubiquitin-receptor on its way to proteasome-mediated degradation. We find that UBXN7 over-expression converts CUL2 to its neddylated form and causes the accumulation of non-ubiquitylated HIF1α. Both of these effects are strictly UIM-dependent and occur only when UBXN7 contains an intact UIM motif. We also show that HIF1α carrying long ubiquitin-chains can recruit alternative ubiquitin-receptors, lacking p97's ATP-dependent segregase activity.
Conclusions
Our study shows that independently of its function as a ubiquitin-binding adaptor for p97, UBXN7 directly interacts with neddylated cullins and causes the accumulation of the CUL2 substrate HIF1α. We propose that by sequestering CUL2 in its neddylated form, UBXN7 negatively regulates the ubiquitin-ligase activity of CRL2 and this might prevent recruitment of ubiquitin-receptors other than p97 to nuclear HIF1α.
doi:10.1186/1741-7007-10-36
PMCID: PMC3349548  PMID: 22537386
cullin; NEDD8; p97; ubiquitin-dependent degradation; UBXD7
7.  The TFIIH subunit Tfb3 regulates cullin neddylation 
Molecular cell  2011;43(3):488-495.
Summary
Cullin proteins are scaffolds for the assembly of multi-subunit ubiquitin ligases, which ubiquitylate a large number of proteins involved in widely-varying cellular functions. Multiple mechanisms cooperate to regulate cullin activity, including neddylation of their C-terminal domain. Interestingly, we found that the yeast Cul4-type cullin Rtt101 is not only neddylated but also ubiquitylated, and both modifications promote Rtt101 function in vivo. Surprisingly, proper modification of Rtt101 neither correlated with catalytic activity of the RING-domain of Hrt1 nor did it require the Nedd8 ligase Dcn1. Instead, ubiquitylation of Rtt101 was dependent on the ubiquitin-conjugating enzyme Ubc4, while efficient neddylation involves the RING-domain protein Tfb3, a subunit of the transcription factor TFIIH. Tfb3 also controls Cul3 neddylation and activity in vivo, and physically interacts with Ubc4 and the Nedd8-conjugating enzyme Ubc12 as well as the Hrt1/Rtt101 complex. Together, these results suggest that the conserved RING-domain protein Tfb3 controls activation of a subset of cullins.
doi:10.1016/j.molcel.2011.05.032
PMCID: PMC3186349  PMID: 21816351
8.  GSK-3 Phosphorylation of the Alzheimer Epitope within Collapsin Response Mediator Proteins Regulates Axon Elongation in Primary Neurons* 
The Journal of biological chemistry  2004;279(48):50176-50180.
Elevated glycogen synthase kinase-3 (GSK-3) activity is associated with Alzheimer disease. We have found that collapsin response mediator proteins (CRMP) 2 and 4 are physiological substrates of GSK-3. The amino acids targeted by GSK-3 comprise a hyperphosphorylated epitope first identified in plaques isolated from Alzheimer brain. Expression of wild type CRMP2 in primary hippocampal neurons or SH-SY5Y neuroblastoma cells promotes axon elongation. However, a GSK-3-insensitive CRMP2 mutant has dramatically reduced ability to promote axon elongation, a similar effect to pharmacological inhibition of GSK-3. Hence, we propose that phosphorylation of CRMP proteins by GSK-3 regulates axon elongation. This work provides a direct connection between hyperphosphorylation of these residues and elevated GSK-3 activity, both of which are observed in Alzheimer brain.
doi:10.1074/jbc.C400412200
PMCID: PMC1832086  PMID: 15466863

Results 1-8 (8)