Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Describing the Breakbone Fever: IDODEN, an Ontology for Dengue Fever 
PLoS Neglected Tropical Diseases  2015;9(2):e0003479.
Ontologies represent powerful tools in information technology because they enhance interoperability and facilitate, among other things, the construction of optimized search engines. To address the need to expand the toolbox available for the control and prevention of vector-borne diseases we embarked on the construction of specific ontologies. We present here IDODEN, an ontology that describes dengue fever, one of the globally most important diseases that are transmitted by mosquitoes.
Methodology/Principal Findings
We constructed IDODEN using open source software, and modeled it on IDOMAL, the malaria ontology developed previously. IDODEN covers all aspects of dengue fever, such as disease biology, epidemiology and clinical features. Moreover, it covers all facets of dengue entomology. IDODEN, which is freely available, can now be used for the annotation of dengue-related data and, in addition to its use for modeling, it can be utilized for the construction of other dedicated IT tools such as decision support systems.
The availability of the dengue ontology will enable databases hosting dengue-associated data and decision-support systems for that disease to perform most efficiently and to link their own data to those stored in other independent repositories, in an architecture- and software-independent manner.
Author Summary
The need for the construction of a dengue ontology arose through the fact that the incidence of dengue fever is on the rise across the world; the number of cases may be three to four times higher than the 100 million estimated by the WHO and a vaccine is still not available in spite of the significant efforts undertaken. Thus, control of dengue fever still relies mostly on controlling its mosquito vectors. Large amounts of entomological, epidemiological and clinical data are generated; these need to be efficiently organized in order to further our comprehension of the disease and its control. IDODEN aims to cover the different aspects and intricacies of dengue fever and syndromes caused by dengue virus(es). It contains more than 5000 terms describing epidemiological data, vaccine development, clinical features, the disease course, and more. We show here that it can be a helpful tool for researchers and that, in addition to allowing sophisticated search strategies, it is also useful for tasks such as modeling.
PMCID: PMC4315569  PMID: 25646954
2.  Non-coding RNA gene families in the genomes of anopheline mosquitoes 
BMC Genomics  2014;15(1):1038.
Only a small fraction of the mosquito species of the genus Anopheles are able to transmit malaria, one of the biggest killer diseases of poverty, which is mostly prevalent in the tropics. This diversity has genetic, yet unknown, causes. In a further attempt to contribute to the elucidation of these variances, the international “Anopheles Genomes Cluster Consortium” project (a.k.a. “16 Anopheles genomes project”) was established, aiming at a comprehensive genomic analysis of several anopheline species, most of which are malaria vectors. In the frame of the international consortium carrying out this project our team studied the genes encoding families of non-coding RNAs (ncRNAs), concentrating on four classes: microRNA (miRNA), ribosomal RNA (rRNA), small nuclear RNA (snRNA), and in particular small nucleolar RNA (snoRNA) and, finally, transfer RNA (tRNA).
Our analysis was carried out using, exclusively, computational approaches, and evaluating both the primary NGS reads as well as the respective genome assemblies produced by the consortium and stored in VectorBase; moreover, the results of RNAseq surveys in cases in which these were available and meaningful were also accessed in order to obtain supplementary data, as were “pre-genomic era” sequence data stored in nucleic acid databases. The investigation included the identification and analysis, in most species studied, of ncRNA genes belonging to several families, as well as the analysis of the evolutionary relations of some of those genes in cross-comparisons to other members of the genus Anopheles.
Our study led to the identification of members of these gene families in the majority of twenty different anopheline taxa. A set of tools for the study of the evolution and molecular biology of important disease vectors has, thus, been obtained.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-1038) contains supplementary material, which is available to authorized users.
PMCID: PMC4300560  PMID: 25432596
Anopheles; Genome evolution; microRNA; ncRNA; Ribosomal genes; Small nuclear RNA; Small nucleolar RNA; tRNA; Whole Genome Sequencing
3.  IDOMAL: the malaria ontology revisited 
With about half a billion cases, of which nearly one million fatal ones, malaria constitutes one of the major infectious diseases worldwide. A recently revived effort to eliminate the disease also focuses on IT resources for its efficient control, which prominently includes the control of the mosquito vectors that transmit the Plasmodium pathogens. As part of this effort, IDOMAL has been developed and it is continually being updated.
In addition to the improvement of IDOMAL’s structure and the correction of some inaccuracies, there were some major subdomain additions such as a section on natural products and remedies, and the import, from other, higher order ontologies, of several terms, which were merged with IDOMAL terms. Effort was put on rendering IDOMAL fully compatible as an extension of IDO, the Infectious Disease Ontology. The reason for the difficulties in fully reaching that target were the inherent differences between vector-borne diseases and “classical” infectious diseases, which make it necessary to specifically adjust the ontology’s architecture in order to comprise vectors and their populations.
In addition to a higher coverage of domain-specific terms and optimizing its usage by databases and decision-support systems, the new version of IDOMAL described here allows for more cross-talk between it and other ontologies, and in particular IDO. The malaria ontology is available for downloading at the OBO Foundry ( and the NCBO BioPortal (
PMCID: PMC3848731  PMID: 24034841
Malaria; Vector borne disease; IDO; Remedies; Ontology
4.  A set of ontologies to drive tools for the control of vector-borne diseases 
We are developing a set of ontologies dealing with vector-borne diseases as well as the arthropod vectors that transmit them. After building ontologies for mosquito and tick anatomy we continued this project with an ontology of insecticide resistance followed by a series of ontologies that describe malaria as well as physiological processes of mosquitoes that are relevant to, and involved in, disease transmission. These will later be expanded to encompass other vector-borne diseases as well as non-mosquito vectors. The aim of the whole undertaking, which is worked out in the frame of the international IDO (Infectious Disease Ontology) project, is to provide the community with a set of ontological tools that can be used both in the development of specific databases and, most importantly, in the construction of decision support systems (DSS) to control these diseases.
PMCID: PMC2953594  PMID: 20363364
anatomy; database; decision support system; insecticide resistance; malaria; mosquito; tick; transmission; arthropod vector
5.  VectorBase: improvements to a bioinformatics resource for invertebrate vector genomics 
Nucleic Acids Research  2011;40(Database issue):D729-D734.
VectorBase ( is a NIAID-supported bioinformatics resource for invertebrate vectors of human pathogens. It hosts data for nine genomes: mosquitoes (three Anopheles gambiae genomes, Aedes aegypti and Culex quinquefasciatus), tick (Ixodes scapularis), body louse (Pediculus humanus), kissing bug (Rhodnius prolixus) and tsetse fly (Glossina morsitans). Hosted data range from genomic features and expression data to population genetics and ontologies. We describe improvements and integration of new data that expand our taxonomic coverage. Releases are bi-monthly and include the delivery of preliminary data for emerging genomes. Frequent updates of the genome browser provide VectorBase users with increasing options for visualizing their own high-throughput data. One major development is a new population biology resource for storing genomic variations, insecticide resistance data and their associated metadata. It takes advantage of improved ontologies and controlled vocabularies. Combined, these new features ensure timely release of multiple types of data in the public domain while helping overcome the bottlenecks of bioinformatics and annotation by engaging with our user community.
PMCID: PMC3245112  PMID: 22135296
6.  IDOMAL: an ontology for malaria 
Malaria Journal  2010;9:230.
Ontologies are rapidly becoming a necessity for the design of efficient information technology tools, especially databases, because they permit the organization of stored data using logical rules and defined terms that are understood by both humans and machines. This has as consequence both an enhanced usage and interoperability of databases and related resources. It is hoped that IDOMAL, the ontology of malaria will prove a valuable instrument when implemented in both malaria research and control measures.
The OBOEdit2 software was used for the construction of the ontology. IDOMAL is based on the Basic Formal Ontology (BFO) and follows the rules set by the OBO Foundry consortium.
The first version of the malaria ontology covers both clinical and epidemiological aspects of the disease, as well as disease and vector biology. IDOMAL is meant to later become the nucleation site for a much larger ontology of vector borne diseases, which will itself be an extension of a large ontology of infectious diseases (IDO). The latter is currently being developed in the frame of a large international collaborative effort.
IDOMAL, already freely available in its first version, will form part of a suite of ontologies that will be used to drive IT tools and databases specifically constructed to help control malaria and, later, other vector-borne diseases. This suite already consists of the ontology described here as well as the one on insecticide resistance that has been available for some time. Additional components are being developed and introduced into IDOMAL.
PMCID: PMC2925367  PMID: 20698959
7.  MIRO and IRbase: IT Tools for the Epidemiological Monitoring of Insecticide Resistance in Mosquito Disease Vectors 
Monitoring of insect vector populations with respect to their susceptibility to one or more insecticides is a crucial element of the strategies used for the control of arthropod-borne diseases. This management task can nowadays be achieved more efficiently when assisted by IT (Information Technology) tools, ranging from modern integrated databases to GIS (Geographic Information System). Here we describe an application ontology that we developed de novo, and a specially designed database that, based on this ontology, can be used for the purpose of controlling mosquitoes and, thus, the diseases that they transmit.
Methodology/Principal Findings
The ontology, named MIRO for Mosquito Insecticide Resistance Ontology, developed using the OBO-Edit software, describes all pertinent aspects of insecticide resistance, including specific methodology and mode of action. MIRO, then, forms the basis for the design and development of a dedicated database, IRbase, constructed using open source software, which can be used to retrieve data on mosquito populations in a temporally and spatially separate way, as well as to map the output using a Google Earth interface. The dependency of the database on the MIRO allows for a rational and efficient hierarchical search possibility.
The fact that the MIRO complies with the rules set forward by the OBO (Open Biomedical Ontologies) Foundry introduces cross-referencing with other biomedical ontologies and, thus, both MIRO and IRbase are suitable as parts of future comprehensive surveillance tools and decision support systems that will be used for the control of vector-borne diseases. MIRO is downloadable from and IRbase is accessible at VectorBase, the NIAID-sponsored open access database for arthropod vectors of disease.
Author Summary
It is a historical fact that a successful campaign against vector populations is one of the prerequisites for effectively fighting and eventually eradicating arthropod-borne diseases, be that in an epidemic or, even more so, in endemic cases. Based mostly on the use of insecticides and environmental management, vector control is now increasingly hampered by the occurrence of insecticide resistance that manifests itself, and spreads rapidly, briefly after the introduction of a (novel) chemical substance. We make use here of a specially built ontology, MIRO, to drive a new database, IRbase, dedicated to storing data on the occurrence of insecticide resistance in mosquito populations worldwide. The ontological approach to the design of databases offers the great advantage that these can be searched in an efficient way. Moreover, it also provides for an increased interoperability of present and future epidemiological tools. IRbase is now being populated by both older data from the literature and data recently collected from field.
PMCID: PMC2694272  PMID: 19547750
8.  VectorBase: a data resource for invertebrate vector genomics 
Nucleic Acids Research  2008;37(Database issue):D583-D587.
VectorBase ( is an NIAID-funded Bioinformatic Resource Center focused on invertebrate vectors of human pathogens. VectorBase annotates and curates vector genomes providing a web accessible integrated resource for the research community. Currently, VectorBase contains genome information for three mosquito species: Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus, a body louse Pediculus humanus and a tick species Ixodes scapularis. Since our last report VectorBase has initiated a community annotation system, a microarray and gene expression repository and controlled vocabularies for anatomy and insecticide resistance. We have continued to develop both the software infrastructure and tools for interrogating the stored data.
PMCID: PMC2686483  PMID: 19028744
9.  VectorBase: a home for invertebrate vectors of human pathogens 
Nucleic Acids Research  2006;35(Database issue):D503-D505.
VectorBase () is a web-accessible data repository for information about invertebrate vectors of human pathogens. VectorBase annotates and maintains vector genomes providing an integrated resource for the research community. Currently, VectorBase contains genome information for two organisms: Anopheles gambiae, a vector for the Plasmodium protozoan agent causing malaria, and Aedes aegypti, a vector for the flaviviral agents causing Yellow fever and Dengue fever.
PMCID: PMC1751530  PMID: 17145709

Results 1-9 (9)