Search tips
Search criteria

Results 1-25 (60)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Phosphorylation of Synaptic Vesicle Protein 2A at Thr84 by Casein Kinase 1 Family Kinases Controls the Specific Retrieval of Synaptotagmin-1 
The Journal of Neuroscience  2015;35(6):2492-2507.
Synaptic vesicle protein 2A (SV2A) is a ubiquitous component of synaptic vesicles (SVs). It has roles in both SV trafficking and neurotransmitter release. We demonstrate that Casein kinase 1 family members, including isoforms of Tau–tubulin protein kinases (TTBK1 and TTBK2), phosphorylate human SV2A at two constellations of residues, namely Cluster-1 (Ser42, Ser45, and Ser47) and Cluster-2 (Ser80, Ser81, and Thr84). These residues are also phosphorylated in vivo, and the phosphorylation of Thr84 within Cluster-2 is essential for triggering binding to the C2B domain of human synaptotagmin-1. We show by crystallographic and other analyses that the phosphorylated Thr84 residue binds to a pocket formed by three conserved Lys residues (Lys314, Lys326, and Lys328) on the surface of the synaptotagmin-1 C2B domain. Finally, we observed dysfunctional synaptotagmin-1 retrieval during SV endocytosis by ablating its phospho-dependent interaction with SV2A, knockdown of SV2A, or rescue with a phosphorylation-null Thr84 SV2A mutant in primary cultures of mouse neurons. This study reveals fundamental details of how phosphorylation of Thr84 on SV2A controls its interaction with synaptotagmin-1 and implicates SV2A as a phospho-dependent chaperone required for the specific retrieval of synaptotagmin-1 during SV endocytosis.
PMCID: PMC4323530  PMID: 25673844
CK1; SV2A; synaptotagmin
2.  Characterization of a selective inhibitor of the Parkinson’s disease kinase LRRK2 
Nature Chemical Biology  2011;7(4):203-205.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are strongly associated with late-onset autosomal dominant Parkinson’s disease. We employed a novel, parallel, compound-centric approach to identify a potent and selective LRRK2 inhibitor LRRK2-IN-1, and demonstrated that inhibition of LRRK2 induces dephosphorylation of Ser910/Ser935 and accumulation of LRRK2 within aggregate structures. LRRK2-IN-1 will serve as a versatile tool to pharmacologically interrogate LRRK2 biology and study its role in Parkinson’s disease.
PMCID: PMC3287420  PMID: 21378983
3.  Novel role for the LKB1 pathway in controlling monocarboxylate fuel transporters 
The Journal of Cell Biology  2008;183(1):7-9.
A question preoccupying many researchers is how signal transduction pathways control metabolic processes and energy production. A study by Jang et al. (Jang, C., G. Lee, and J. Chung. 2008. J. Cell Biol. 183:11–17) provides evidence that in Drosophila melanogaster a signaling network controlled by the LKB1 tumor suppressor regulates trafficking of an Sln/dMCT1 monocarboxylate transporter to the plasma membrane. This enables cells to import additional energy sources such as lactate and butyrate, enhancing the repertoire of fuels they can use to power vital activities.
PMCID: PMC2557034  PMID: 18838550
4.  Regulation of activity and localization of the WNK1 protein kinase by hyperosmotic stress 
The Journal of Cell Biology  2007;176(1):89-100.
Mutations within the WNK1 (with-no-K[Lys] kinase-1) gene cause Gordon's hypertension syndrome. Little is known about how WNK1 is regulated. We demonstrate that WNK1 is rapidly activated and phosphorylated at multiple residues after exposure of cells to hyperosmotic conditions and that activation is mediated by the phosphorylation of its T-loop Ser382 residue, possibly triggered by a transautophosphorylation reaction. Activation of WNK1 coincides with the phosphorylation and activation of two WNK1 substrates, namely, the protein kinases STE20/SPS1-related proline alanine–rich kinase (SPAK) and oxidative stress response kinase-1 (OSR1). Small interfering RNA depletion of WNK1 impairs SPAK/OSR1 activity and phosphorylation of residues targeted by WNK1. Hyperosmotic stress induces rapid redistribution of WNK1 from the cytosol to vesicular structures that may comprise trans-Golgi network (TGN)/recycling endosomes, as they display rapid movement, colocalize with clathrin, adaptor protein complex 1 (AP-1), and TGN46, but not the AP-2 plasma membrane–coated pit marker nor the endosomal markers EEA1, Hrs, and LAMP1. Mutational analysis suggests that the WNK1 C-terminal noncatalytic domain mediates vesicle localization. Our observations shed light on the mechanism by which WNK1 is regulated by hyperosmotic stress.
PMCID: PMC2063630  PMID: 17190791
5.  Role of TAPP1 and TAPP2 adaptor binding to PtdIns(3,4)P2 in regulating insulin sensitivity defined by knock-in analysis 
The Biochemical journal  2011;434(2):265-274.
Insulin sensitivity is critically dependent on the activity of PI3K (phosphoinositide 3-kinase) and generation of the PtdIns(3,4,5)P3 second messenger. PtdIns(3,4,5)P3 can be broken down to PtdIns(3,4)P2 through the action of the SHIPs (Src-homology-2-domain-containing inositol phosphatases). As PtdIns(3,4)P2 levels peak after those of PtdIns(3,4,5)P3, it has been proposed that PtdIns(3,4)P2 controls a negative-feedback loop that down-regulates the insulin and PI3K network. Previously, we identified two related adaptor proteins termed TAPP [tandem PH (pleckstrin homology)-domain-containing protein] 1 and TAPP2 that specifically bind to PtdIns(3,4)P2 through their C-terminal PH domain. To determine whether TAPP1 and TAPP2 play a role in regulating insulin sensitivity, we generated knock-in mice that express normal endogenous levels of mutant TAPP1 and TAPP2 that are incapable of binding PtdIns(3,4)P2. These homozygous TAPP1R211L/R211LTAPP2R218L/R218L double knock-in mice are viable and exhibit significantly enhanced activation of Akt, a key downstream mediator of insulin signalling. Consistent with increased PI3K and Akt activity, the double knock-in mice display enhanced whole body insulin sensitivity and disposal of glucose uptake into muscle tissues. We also generated wild-type and double TAPP1R211L/R211LTAPP2R218L/R218L knock-in embryonic fibroblasts and found that insulin triggered enhanced production of PtdIns(3,4,5)P3 and Akt activity in the double knock-in fibroblasts. These observations provide the first genetic evidence to support the notion that binding of TAPP1 and TAPP2 adaptors to PtdIns(3,4)P2 function as negative regulators of the insulin and PI3K signalling pathways.
PMCID: PMC4461655  PMID: 21204784
insulin signalling; phosphoinositide 3-kinase (PI3K); pleckstrin homology domain (PH domain); protein tyrosine phosphatase; tandem pleckstrin homology-domain-containing protein (TAPP)
6.  Critical role of the SPAK protein kinase CCT domain in controlling blood pressure 
Human Molecular Genetics  2015;24(16):4545-4558.
The STE20/SPS1-related proline/alanine-rich kinase (SPAK) controls blood pressure (BP) by phosphorylating and stimulating the Na-Cl (NCC) and Na-K-2Cl (NKCC2) co-transporters, which regulate salt reabsorption in the kidney. SPAK possesses a conserved carboxy-terminal (CCT) domain, which recognises RFXV/I motifs present in its upstream activator [isoforms of the With-No-lysine (K) kinases (WNKs)] as well as its substrates (NCC and NKCC2). To define the physiological importance of the CCT domain, we generated knock-in mice in which the critical CCT domain Leu502 residue required for high affinity recognition of the RFXI/V motif was mutated to Alanine. The SPAK CCT domain defective knock-in animals are viable, and the Leu502Ala mutation abolished co-immunoprecipitation of SPAK with WNK1, NCC and NKCC2. The CCT domain defective animals displayed markedly reduced SPAK activity and phosphorylation of NCC and NKCC2 co-transporters at the residues phosphorylated by SPAK. This was also accompanied by a reduction in the expression of NCC and NKCC2 protein without changes in mRNA levels. The SPAK CCT domain knock-in mice showed typical features of Gitelman Syndrome with mild hypokalaemia, hypomagnesaemia, hypocalciuria and displayed salt wasting on switching to a low-Na diet. These observations establish that the CCT domain plays a crucial role in controlling SPAK activity and BP. Our results indicate that CCT domain inhibitors would be effective at reducing BP by lowering phosphorylation as well as expression of NCC and NKCC2.
PMCID: PMC4512625  PMID: 25994507
7.  Screening of DUB activity and specificity by MALDI-TOF mass spectrometry 
Nature Communications  2014;5:4763.
Deubiquitylases (DUBs) are key regulators of the ubiquitin system which cleave ubiquitin moieties from proteins and polyubiquitin chains. Several DUBs have been implicated in various diseases and are attractive drug targets. We have developed a sensitive and fast assay to quantify in vitro DUB enzyme activity using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Unlike other current assays, this method uses unmodified substrates, such as diubiquitin topoisomers. By analysing 42 human DUBs against all diubiquitin topoisomers we provide an extensive characterization of DUB activity and specificity. Our results confirm the high specificity of many members of the OTU and JAB/MPN/Mov34 metalloenzyme DUB families and highlight that all USPs tested display low linkage selectivity. We also demonstrate that this assay can be deployed to assess the potency and specificity of DUB inhibitors by profiling 11 compounds against a panel of 32 DUBs.
Deubiquitylases (DUBs) remove ubiquitin chains from proteins. Here the authors develop a mass spectrometry-based DUB activity screen using unmodified diubiquitin isomers to characterize substrate specificity for 42 human DUBs, and assess the potency and selectivity of 11 DUB inhibitors.
PMCID: PMC4147353  PMID: 25159004
8.  Screening of DUB activity and specificity by MALDI-TOF mass spectrometry 
Nature communications  2014;5:4763.
Deubiquitylases (DUBs) are key regulators of the ubiquitin system which cleave ubiquitin moieties from proteins and polyubiquitin chains. Several DUBs have been implicated in various diseases and are attractive drug targets. We have developed a sensitive and fast assay to quantify in vitro DUB enzyme activity using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Unlike other current assays, this method uses unmodified substrates, such as diubiquitin topoisomers. By analyzing 42 human DUBs against all diubiquitin topoisomers we provide an extensive characterization of DUB activity and specificity. Our results confirm the high specificity of many members of the OTU and JAMM DUB families and highlight that all USPs tested display low linkage selectivity. We also demonstrate that this assay can be deployed to assess the potency and specificity of DUB inhibitors by profiling 11 compounds against a panel of 32 DUBs.
PMCID: PMC4147353  PMID: 25159004
Deubiquitylase; ubiquitin; quantification; MALDI-TOF; mass spectrometry; inhibitor screening
9.  A next-generation dual-recombinase system for time and host specific targeting of pancreatic cancer 
Nature medicine  2014;20(11):1340-1347.
Genetically engineered mouse models (GEMMs) have dramatically improved our understanding of tumor evolution and therapeutic resistance. However, sequential genetic manipulation of gene expression and targeting of the host is almost impossible using conventional Cre-loxP–based models. We have developed an inducible dual-recombinase system by combining flippase-FRT (Flp-FRT) and Cre-loxP recombination technologies to improve GEMMs of pancreatic cancer. This enables investigation of multistep carcinogenesis, genetic manipulation of tumor subpopulations (such as cancer stem cells), selective targeting of the tumor microenvironment and genetic validation of therapeutic targets in autochthonous tumors on a genome-wide scale. As a proof of concept, we performed tumor cell–autonomous and nonautonomous targeting, recapitulated hallmarks of human multistep carcinogenesis, validated genetic therapy by 3-phosphoinositide-dependent protein kinase inactivation as well as cancer cell depletion and show that mast cells in the tumor microenvironment, which had been thought to be key oncogenic players, are dispensable for tumor formation.
PMCID: PMC4270133  PMID: 25326799
10.  Structural Determinants for ERK5 (MAPK7) and Leucine Rich Repeat Kinase 2 Activities of benzo[e]pyrimido-[5,4-b]diazepine-6(11H)-ones 
The benzo[e]pyrimido-[5,4-b]diazepine-6(11H)-one core was discovered as a novel ERK5 (also known as MAPK7 and BMK1) inhibitor scaffold, previously. Further structure-activity relationship studies of this scaffold led to the discovery of ERK5-IN-1 (26) as the most selective and potent ERK5 inhibitor reported to date. 26 potently inhibits ERK5 biochemically with an IC50 of 0.162 ± 0.006 μM and in cells with a cellular EC50 for inhibiting epidermal growth factor induced ERK5 autophosphorylation of 0.09 ± 0.03 μM. Furthermore, 26 displays excellent selectivity over other kinases with a KINOMEscan selectivity score (S10) of 0.007, and exhibits exceptional bioavailability (F%) of 90% in mice. 26 will serve as a valuable tool compound to investigate the ERK5 signaling pathway and as a starting point for developing an ERK5 directed therapeutic agent.
PMCID: PMC3914206  PMID: 24239623
ERK5 inhibitor; kinase selectivity; benzo[e]pyrimido-[5,4-b]diazepine-6(11H)-one
11.  GSK2578215A; A potent and highly selective 2-arylmethyloxy-5-substitutent-N-arylbenzamide LRRK2 kinase inhibitor 
Leucine-rich repeat kinase 2 (LRRK2) is a promising therapeutic target for some forms of Parkinson’s disease. Here we report the discovery and characterization of 2-arylmethyloxy-5-subtitutent-N-arylbenzamides with potent LRRK2 activities exemplified by GSK2578215A which exhibits biochemical IC50s of around 10 nM against both wild-type LRRK2 and the G2019S mutant. GSK2578215A exhibits exceptionally high selectivity for LRRK2 across the kinome, substantially inhibits Ser910 and Ser935 phosphorylation of both wild-type LRRK2 and G2019S mutant at a concentration of 0.3–1.0 μM in cells and in mouse spleen and kidney, but not in brain, following intraperitoneal injection of 100 mg/kg.
PMCID: PMC4208292  PMID: 22863203
LRRK2; Drug discovery; Kinase inhibitors; Parkinson’s disease
12.  Kinase Drug Discovery – What’s Next in the Field? 
ACS chemical biology  2012;8(1):96-104.
Over the past 15 years protein kinases have become the pharmaceutical industry’s most important class of drug target in the field of cancer. Some 20 drugs that target kinases have been approved for clinical use over the past decade, and hundreds more are undergoing clinical trials. However, the recent approval of the first protein kinase inhibitors for the treatment of inflammatory diseases, coupled with an enhanced understanding of the signaling networks that control the immune system, suggests that there will be a surge of interest in this area over the next 10 years. In this connection, we discuss opportunities for targeting protein kinases in the MyD88 signaling network for the development of drugs to treat chronic inflammatory and autoimmune diseases. Activating mutations in protein kinases underlie many other diseases and conditions, and we also discuss why the protein kinases SPAK/OSR1 and LRRK2 have recently become interesting targets for the treatment of hypertension and Parkinson’s disease, respectively, and the progress that has been made in developing LRRK2 inhibitors. Finally we suggest that more focus on the identification of inhibitors of kinase activation, rather than kinase activity, may pay dividends in identifying exquisitely specific inhibitors of signal transduction cascades, and we also highlight “pseudo-kinases” as an attractive and unexplored area for drug development that merits much more attention in the years to come.
PMCID: PMC4208300  PMID: 23276252
13.  Development of an enzyme-linked immunosorbent assay for detection of cellular and in vivo LRRK2 S935 phosphorylation 
After the discovery of kinase activating mutations in leucine-rich repeat kinase 2 (LRRK2) as associated with autosomal dominant forms of Parkinson’s disease, inhibition of the kinase is being extensively explored as a disease modifying strategy. As signaling properties and substrate(s) of LRRK2 are poorly documented, autophosphorylation has been an important readout for the enzyme’s activity. Western blotting using anti-phospho-S910 or S935 LRRK2 antibodies showed effectiveness in demonstrating inhibitory effects of compounds.
In this communication we describe two types of enzyme-linked immunosorbent assays (ELISA) to determine LRRK2 protein levels and kinase activity. Both assays take advantage of the sensitivity of the earlier described total and pS935 antibodies for detection (Nichols et al., Biochem. J. 2010) [10]. The first assay is based on anti-GFP-based capturing of overexpressed LRRK2 and is highly suitable to show cellular effects of kinase inhibitors in a 96-well format. In the other platform anti-LRRK2-based capturing allows detection of endogenously expressed LRRK2 in rat tissue with no significant signal in tissue from LRRK2 knockout rats. Furthermore, both assays showed a significant reduction in pS935 levels on cellular and transgenic R1441C/G LRRK2. With the anti-LRRK2 ELISA we were able to detect LRRK2 phosphorylation in human peripheral blood mononuclear cells (PBMC).
To conclude, we report two sensitive assays to monitor LRRK2 expression and kinase activity in samples coming from cellular and in vivo experimental settings. Both can show their value in drug screening and biomarker development but will also be useful in the elucidation of LRRK2-mediated signaling pathways.
PMCID: PMC4196644  PMID: 23313773
LRRK2; ELISA; S935 phosphorylation; Parkinson’s disease
14.  Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase 
Biochemical Journal  2014;463(Pt 3):413-427.
The Vps34 (vacuolar protein sorting 34) class III PI3K (phosphoinositide 3-kinase) phosphorylates PtdIns (phosphatidylinositol) at endosomal membranes to generate PtdIns(3)P that regulates membrane trafficking processes via its ability to recruit a subset of proteins possessing PtdIns(3)P-binding PX (phox homology) and FYVE domains. In the present study, we describe a highly selective and potent inhibitor of Vps34, termed VPS34-IN1, that inhibits Vps34 with 25 nM IC50 in vitro, but does not significantly inhibit the activity of 340 protein kinases or 25 lipid kinases tested that include all isoforms of class I as well as class II PI3Ks. Administration of VPS34-IN1 to cells induces a rapid dose-dependent dispersal of a specific PtdIns(3)P-binding probe from endosome membranes, within 1 min, without affecting the ability of class I PI3K to regulate Akt. Moreover, we explored whether SGK3 (serum- and glucocorticoid-regulated kinase-3), the only protein kinase known to interact specifically with PtdIns(3)P via its N-terminal PX domain, might be controlled by Vps34. Mutations disrupting PtdIns(3)P binding ablated SGK3 kinase activity by suppressing phosphorylation of the T-loop [PDK1 (phosphoinositide-dependent kinase 1) site] and hydrophobic motif (mammalian target of rapamycin site) residues. VPS34-IN1 induced a rapid ~50–60% loss of SGK3 phosphorylation within 1 min. VPS34-IN1 did not inhibit activity of the SGK2 isoform that does not possess a PtdIns(3)P-binding PX domain. Furthermore, class I PI3K inhibitors (GDC-0941 and BKM120) that do not inhibit Vps34 suppressed SGK3 activity by ~40%. Combining VPS34-IN1 and GDC-0941 reduced SGK3 activity ~80–90%. These data suggest SGK3 phosphorylation and hence activity is controlled by two pools of PtdIns(3)P. The first is produced through phosphorylation of PtdIns by Vps34 at the endosome. The second is due to the conversion of class I PI3K product, PtdIns(3,4,5)P3 into PtdIns(3)P, via the sequential actions of the PtdIns 5-phosphatases [SHIP1/2 (Src homology 2-domain-containing inositol phosphatase 1/2)] and PtdIns 4-phosphatase [INPP4B (inositol polyphosphate 4-phosphatase type II)]. VPS34-IN1 will be a useful probe to delineate physiological roles of the Vps34. Monitoring SGK3 phosphorylation and activity could be employed as a biomarker of Vps34 activity, in an analogous manner by which Akt is used to probe cellular class I PI3K activity. Combining class I (GDC-0941) and class III (VPS34-IN1) PI3K inhibitors could be used as a strategy to better analyse the roles and regulation of the elusive class II PI3K.
We characterize VPS34-IN, a potent and selective inhibitor of class III Vps34 PI3K. Using VPS34-IN1, we demonstrate that PtdIns(3)P, produced by Vps34 controls phosphorylation and activity of the SGK3 protein kinase.
PMCID: PMC4209782  PMID: 25177796
mammalian target of rapamycin (mTOR); N-Myc downstream-regulated gene-1 (NDRG1); phosphoinositide 3-kinase (PI3K); protein kinase inhibitor; signal transduction inhibitor; 4E-BP1, eukaryotic initiation factor 4E-binding protein 1; DMEM, Dulbecco's modified Eagle's medium; EEA1, early endosome antigen 1; HRP, horseradish peroxidase; IGF, insulin-like growth factor; INPP4B, inositol polyphosphate 4-phosphatase type II; IP1, inositol phosphate; ITC, isothermal titration calorimetry; mTOR, mammalian target of rapamycin; mTORC, mammalian target of rapamycin complex; NDRG1, N-Myc downstream-regulated gene-1; PDK1, phosphoinositide-dependent kinase 1; PH, pleckstrin homology; PI3K, phosphoinositide 3-kinase; PRAS40, proline-rich Akt substrate 40 kDa; PtdIns, phosphatidylinositol; PX, Phox homology; SGK3, serum- and glucocorticoid-regulated kinase-3; SHIP1/2, Src homology 2-domain-containing inositol phosphatase 1/2; TSC2, tuberous sclerosis complex 2; Vps34, vacuolar protein sorting 34; VSV-G, vesicular stomatitis virus glycoprotein
15.  Interplay between Polo kinase, LKB1-activated NUAK1 kinase, PP1βMYPT1 phosphatase complex and the SCFβTrCP E3 ubiquitin ligase 
Biochemical Journal  2014;461(Pt 2):233-245.
NUAK1 (NUAK family SnF1-like kinase-1) and NUAK2 protein kinases are activated by the LKB1 tumour suppressor and have been implicated in regulating multiple processes such as cell survival, senescence, adhesion and polarity. In the present paper we present evidence that expression of NUAK1 is controlled by CDK (cyclin-dependent kinase), PLK (Polo kinase) and the SCFβTrCP (Skp, Cullin and F-boxβTrCP) E3 ubiquitin ligase complex. Our data indicate that CDK phosphorylates NUAK1 at Ser445, triggering binding to PLK, which subsequently phosphorylates NUAK1 at two conserved non-catalytic serine residues (Ser476 and Ser480). This induces binding of NUAK1 to βTrCP, the substrate-recognition subunit of the SCFβTrCP E3 ligase, resulting in NUAK1 becoming ubiquitylated and degraded. We also show that NUAK1 and PLK1 are reciprocally controlled in the cell cycle. In G2–M-phase, when PLK1 is most active, NUAK1 levels are low and vice versa in S-phase, when PLK1 expression is low, NUAK1 is more highly expressed. Moreover, NUAK1 inhibitors (WZ4003 or HTH-01-015) suppress proliferation by reducing the population of cells in S-phase and mitosis, an effect that can be rescued by overexpression of a NUAK1 mutant in which Ser476 and Ser480 are mutated to alanine. Finally, previous work has suggested that NUAK1 phosphorylates and inhibits PP1βMYPT1 (where PP1 is protein phosphatase 1) and that a major role for the PP1βMYPT1 complex is to inhibit PLK1 by dephosphorylating its T-loop (Thr210). We demonstrate that activation of NUAK1 leads to a striking increase in phosphorylation of PLK1 at Thr210, an effect that is suppressed by NUAK1 inhibitors. Our data link NUAK1 to important cell-cycle signalling components (CDK, PLK and SCFβTrCP) and suggest that NUAK1 plays a role in stimulating S-phase, as well as PLK1 activity via its ability to regulate the PP1βMYPT1 phosphatase.
The present study provides insights into the biological regulation of the NUAK isoforms and highlights the remarkable interplay that exists between Polo kinase, NUAK1, PP1βMYPT1 and SCFβTrCP signalling components. It demonstrates NUAK1 inhibitors suppress cell proliferation and PLK1.
PMCID: PMC4109838  PMID: 24785407
AMP-activated protein kinase (AMPK); AMPK-related kinase 5 (ARK5); cell cycle; degron; mitosis; Polo kinase (PLK) ubiquitylation; AMPK, AMP-activated protein kinase; CDK, cyclin-dependent kinase; CK1, casein kinase 1; Cul1, cullin 1; DMEM, Dulbecco’s modified Eagle’s medium; DTB, double thymidine block; Emi1, early mitotic inhibitor 1; GST, glutathione transferase; HA, haemagglutinin; HEK, human embryonic kidney; HRP, horseradish peroxidase; IKK, inhibitor of nuclear factor κB kinase; MEF, mouse embryonic fibroblast; LKB1, liver kinase B1; NEM, N-ethylmaleimide; NUAK, NUAK family SnF1-like kinase; PEI, polyethylenimine; PI, propidium iodide; PLK1, Polo kinase 1; PP1, protein phosphatase 1; SCFβTrCP, Skp, Cullin and F-boxβTrCP; SKP1, S-phase kinase-associated protein 1; Wee1, WEE1 G2 checkpoint kinase; WT, wild-type; XIC, extracted ion chromatogram analysis
16.  Kinase and channel activity of TRPM6 are co-ordinated by a dimerization motif and pocket interaction 
Biochemical Journal  2014;460(Pt 2):165-175.
Mutations in the gene that encodes the atypical channel-kinase TRPM6 (transient receptor potential melastatin 6) cause HSH (hypomagnesaemia with secondary hypocalcaemia), a disorder characterized by defective intestinal Mg2+ transport and impaired renal Mg2+ reabsorption. TRPM6, together with its homologue TRPM7, are unique proteins as they combine an ion channel domain with a C-terminally fused protein kinase domain. How TRPM6 channel and kinase activity are linked is unknown. Previous structural analysis revealed that TRPM7 possesses a non-catalytic dimerization motif preceding the kinase domain. This interacts with a dimerization pocket lying within the kinase domain. In the present study, we provide evidence that the dimerization motif in TRPM6 plays a critical role in regulating kinase activity as well as ion channel activity. We identify mutations within the TRPM6 dimerization motif (Leu1718 and Leu1721) or dimerization pocket (L1743A, Q1832K, A1836N, L1840A and L1919Q) that abolish dimerization and establish that these mutations inhibit protein kinase activity. We also demonstrate that kinase activity of a dimerization motif mutant can be restored by addition of a peptide encompassing the dimerization motif. Moreover, we observe that mutations that disrupt the dimerization motif and dimerization pocket interaction greatly diminish TRPM6 ion channel activity, in a manner that is independent of kinase activity. Finally, we analyse the impact on kinase activity of ten disease-causing missense mutations that lie outwith the protein kinase domain of TRPM6. This revealed that one mutation lying nearby the dimerization motif (S1754N), found previously to inhibit channel activity, abolished kinase activity. These results provide the first evidence that there is structural co-ordination between channel and kinase activity, which is mediated by the dimerization motif and pocket interaction. We discuss that modulation of this interaction could comprise a major regulatory mechanism by which TRPM6 function is controlled.
We show that TRPM6 kinase activity is linked to channel activity. This occurs through a kinase-independent mechanism involving the dimerization motif binding to a pocket within the kinase domain. A disease-causing mutation (S1754N) lying nearby the dimerization pocket inactivates kinase activity.
PMCID: PMC4019984  PMID: 24650431
dimerization motif; hypomagnesaemia; ion channel; phosphorylation; protein kinase; transient receptor potential melastatin (TRPM); E, embryonic day; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HEK, human embryonic kidney; HRP, horseradish peroxidase; HSH, hypomagnesaemia with secondary hypocalcaemia; LDS, lithium dodecyl sulfate; MBP, myelin basic protein; TBST, TBS containing Tween 20; TRPM, transient receptor potential melastatin
17.  Structural and biochemical characterization of the KLHL3–WNK kinase interaction important in blood pressure regulation 
Biochemical Journal  2014;460(Pt 2):237-246.
WNK1 [with no lysine (K)] and WNK4 regulate blood pressure by controlling the activity of ion co-transporters in the kidney. Groundbreaking work has revealed that the ubiquitylation and hence levels of WNK isoforms are controlled by a Cullin-RING E3 ubiquitin ligase complex (CRL3KLHL3) that utilizes CUL3 (Cullin3) and its substrate adaptor, KLHL3 (Kelch-like protein 3). Loss-of-function mutations in either CUL3 or KLHL3 cause the hereditary high blood pressure disease Gordon's syndrome by stabilizing WNK isoforms. KLHL3 binds to a highly conserved degron motif located within the C-terminal non-catalytic domain of WNK isoforms. This interaction is essential for ubiquitylation by CRL3KLHL3 and disease-causing mutations in WNK4 and KLHL3 exert their effects on blood pressure by disrupting this interaction. In the present study, we report on the crystal structure of the KLHL3 Kelch domain in complex with the WNK4 degron motif. This reveals an intricate web of interactions between conserved residues on the surface of the Kelch domain β-propeller and the WNK4 degron motif. Importantly, many of the disease-causing mutations inhibit binding by disrupting critical interface contacts. We also present the structure of the WNK4 degron motif in complex with KLHL2 that has also been reported to bind WNK4. This confirms that KLHL2 interacts with WNK kinases in a similar manner to KLHL3, but strikingly different to how another KLHL protein, KEAP1 (Kelch-like enoyl-CoA hydratase-associated protein 1), binds to its substrate NRF2 (nuclear factor-erythroid 2-related factor 2). The present study provides further insights into how Kelch-like adaptor proteins recognize their substrates and provides a structural basis for how mutations in WNK4 and KLHL3 lead to hypertension.
WNK kinases regulate mammalian blood pressure. The level of WNK protein in a cell is regulated by the KLHL3–CUL3 ubiquitin ligase. We define the interaction between KLHL3 and WNK, identifying the WNK degron, and present the crystal structure of the KLHL3–WNK degron complex.
PMCID: PMC4019986  PMID: 24641320
Bric-a-brac; Tramtrack; and Broad complex (BTB domain); Cullin; hypertension; Kelch-like protein (KLHL); Kelch-like protein 2 (KLHL2); ubiquitin; BTB, Bric-a-brac, Tramtrack, and Broad complex; CRL3KLHL3, Cullin3-RING ligase in complex with KLHL; CUL3, Cullin3; KEAP1, Kelch-like enoyl-CoA hydratase-associated protein 1; KLHL, Kelch-like protein; NCC, Na+/Cl− ion co-transporter; NKCC2, Na+/K+/2Cl− co-transporter 2; NRF2, nuclear factor-erythroid 2-related factor 2; OSR1, oxidative stress-responsive kinase 1; rTEV, recombinant tobacco etch virus; RT-PCR, reverse transcription–PCR; SPAK, SPS1-related proline/alanine-rich kinase; TCEP, tris-(2-carboxyethyl)phosphine; TEV, tobacco etch virus; WNK, with no lysine (K)
18.  Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65 
Biochemical Journal  2014;460(Pt 1):127-139.
We have previously reported that the Parkinson's disease-associated kinase PINK1 (PTEN-induced putative kinase 1) is activated by mitochondrial depolarization and stimulates the Parkin E3 ligase by phosphorylating Ser65 within its Ubl (ubiquitin-like) domain. Using phosphoproteomic analysis, we identified a novel ubiquitin phosphopeptide phosphorylated at Ser65 that was enriched 14-fold in HEK (human embryonic kidney)-293 cells overexpressing wild-type PINK1 stimulated with the mitochondrial uncoupling agent CCCP (carbonyl cyanide m-chlorophenylhydrazone), to activate PINK1, compared with cells expressing kinase-inactive PINK1. Ser65 in ubiquitin lies in a similar motif to Ser65 in the Ubl domain of Parkin. Remarkably, PINK1 directly phosphorylates Ser65 of ubiquitin in vitro. We undertook a series of experiments that provide striking evidence that Ser65-phosphorylated ubiquitin (ubiquitinPhospho−Ser65) functions as a critical activator of Parkin. First, we demonstrate that a fragment of Parkin lacking the Ubl domain encompassing Ser65 (ΔUbl-Parkin) is robustly activated by ubiquitinPhospho−Ser65, but not by non-phosphorylated ubiquitin. Secondly, we find that the isolated Parkin Ubl domain phosphorylated at Ser65 (UblPhospho−Ser65) can also activate ΔUbl-Parkin similarly to ubiquitinPhospho−Ser65. Thirdly, we establish that ubiquitinPhospho−Ser65, but not non-phosphorylated ubiquitin or UblPhospho−Ser65, activates full-length wild-type Parkin as well as the non-phosphorylatable S65A Parkin mutant. Fourthly, we provide evidence that optimal activation of full-length Parkin E3 ligase is dependent on PINK1-mediated phosphorylation of both Parkin at Ser65 and ubiquitin at Ser65, since only mutation of both proteins at Ser65 completely abolishes Parkin activation. In conclusion, the findings of the present study reveal that PINK1 controls Parkin E3 ligase activity not only by phosphorylating Parkin at Ser65, but also by phosphorylating ubiquitin at Ser65. We propose that phosphorylation of Parkin at Ser65 serves to prime the E3 ligase enzyme for activation by ubiquitinPhospho−Ser65, suggesting that small molecules that mimic ubiquitinPhospho−Ser65 could hold promise as novel therapies for Parkinson's disease.
We describe a novel and unexpected mechanism by which PINK1 protein kinase activates Parkin E3 ligase. We show that PINK1 phosphorylates ubiquitin at Ser65 and that phosphorylated ubiquitin acts as a direct activator of Parkin.
PMCID: PMC4000136  PMID: 24660806
Parkin; Parkinson’s disease; phosphorylation; PTEN (phosphatase and tensin homologue deleted on chromosome 10)-induced putative kinase 1 (PINK1); ubiquitin; CCCP, carbonyl cyanide m-chlorophenylhydrazone; CDK2, cyclin-dependent kinase 2; GSK3β, glycogen synthase kinase-3β; HEK, human embryonic kidney; HOIL1, haem-oxidized IRP2 (iron-regulatory protein 2) ubiquitin ligase 1; HRP, horseradish peroxidase; IKK, IκB (inhibitor of nuclear factor κB) kinase; ISG15, interferon-induced 17 kDa protein; MBP, maltose-binding protein; MLK1, mixed lineage kinase 1; Nedd8, neural-precursor-cell-expressed developmentally down-regulated 8; Ni-NTA, Ni2+-nitrilotriacetate; NUAK1, NUAK family SNF1-like kinase 1; OTU1, OTU (ovarian tumour) domain-containing protein 1; PD, Parkinson’s disease; PINK1, PTEN (phosphatase and tensin homologue deleted on chromosome 10)-induced putative kinase 1; PLK1, Polo-like kinase 1; SILAC, stable isotope labelling by amino acids in cell culture; SUMO, small ubiquitin-related modifier; TCEP, tris-(2-carboxyethyl)phosphine; TcPINK1, Tribolium castaneum PINK1; Ubl, ubiquitin-like
19.  Phosphorylation of Parkin at Serine65 is essential for activation: elaboration of a Miro1 substrate-based assay of Parkin E3 ligase activity 
Open Biology  2014;4(3):130213.
Mutations in PINK1 and Parkin are associated with early-onset Parkinson's disease. We recently discovered that PINK1 phosphorylates Parkin at serine65 (Ser65) within its Ubl domain, leading to its activation in a substrate-free activity assay. We now demonstrate the critical requirement of Ser65 phosphorylation for substrate ubiquitylation through elaboration of a novel in vitro E3 ligase activity assay using full-length untagged Parkin and its putative substrate, the mitochondrial GTPase Miro1. We observe that Parkin efficiently ubiquitylates Miro1 at highly conserved lysine residues, 153, 230, 235, 330 and 572, upon phosphorylation by PINK1. We have further established an E2-ubiquitin discharge assay to assess Parkin activity and observe robust discharge of ubiquitin-loaded UbcH7 E2 ligase upon phosphorylation of Parkin at Ser65 by wild-type, but not kinase-inactive PINK1 or a Parkin Ser65Ala mutant, suggesting a possible mechanism of how Ser65 phosphorylation may activate Parkin E3 ligase activity. For the first time, to the best of our knowledge, we report the effect of Parkin disease-associated mutations in substrate-based assays using full-length untagged recombinant Parkin. Our mutation analysis indicates an essential role for the catalytic cysteine Cys431 and reveals fundamental new knowledge on how mutations may confer pathogenicity via disruption of Miro1 ubiquitylation, free ubiquitin chain formation or by impacting Parkin's ability to discharge ubiquitin from a loaded E2. This study provides further evidence that phosphorylation of Parkin at Ser65 is critical for its activation. It also provides evidence that Miro1 is a direct Parkin substrate. The assays and reagents developed in this study will be important to uncover new insights into Parkin biology as well as aid in the development of screens to identify small molecule Parkin activators for the treatment of Parkinson's disease.
PMCID: PMC3971407  PMID: 24647965
Parkin; PINK1; Miro1; ubiquitin; phosphorylation; Parkinson's disease
20.  The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K+–Cl− co-transporters 
Biochemical Journal  2014;458(Pt 3):559-573.
Precise homoeostasis of the intracellular concentration of Cl− is achieved via the co-ordinated activities of the Cl− influx and efflux. We demonstrate that the WNK (WNK lysine-deficient protein kinase)-activated SPAK (SPS1-related proline/alanine-rich kinase)/OSR1 (oxidative stress-responsive kinase 1) known to directly phosphorylate and stimulate the N[K]CCs (Na+–K+ ion co-transporters), also promote inhibition of the KCCs (K+–Cl− co-transporters) by directly phosphorylating a recently described C-terminal threonine residue conserved in all KCC isoforms [Site-2 (Thr1048)]. First, we demonstrate that SPAK and OSR1, in the presence of the MO25 regulatory subunit, robustly phosphorylates all KCC isoforms at Site-2 in vitro. Secondly, STOCK1S-50699, a WNK pathway inhibitor, suppresses SPAK/OSR1 activation and KCC3A Site-2 phosphorylation with similar efficiency. Thirdly, in ES (embryonic stem) cells lacking SPAK/OSR1 activity, endogenous phosphorylation of KCC isoforms at Site-2 is abolished and these cells display elevated basal activity of 86Rb+ uptake that was not markedly stimulated further by hypotonic high K+ conditions, consistent with KCC3A activation. Fourthly, a tight correlation exists between SPAK/OSR1 activity and the magnitude of KCC3A Site-2 phosphorylation. Lastly, a Site-2 alanine KCC3A mutant preventing SPAK/OSR1 phosphorylation exhibits increased activity. We also observe that KCCs are directly phosphorylated by SPAK/OSR1, at a novel Site-3 (Thr5 in KCC1/KCC3 and Thr6 in KCC2/KCC4), and a previously recognized KCC3-specific residue, Site-4 (Ser96). These data demonstrate that the WNK-regulated SPAK/OSR1 kinases directly phosphorylate the N[K]CCs and KCCs, promoting their stimulation and inhibition respectively. Given these reciprocal actions with anticipated net effects of increasing Cl− influx, we propose that the targeting of WNK–SPAK/OSR1 with kinase inhibitors might be a novel potent strategy to enhance cellular Cl− extrusion, with potential implications for the therapeutic modulation of epithelial and neuronal ion transport in human disease states.
WNK-regulated SPAK/OSR1 act as direct phosphorylators and major regulators of the KCC isoforms, which explains how activation of the WNK signalling pathway can co-ordinately regulate Cl− influx and efflux by reciprocally controlling the SLC12A family N[K]CC and KCC isoforms.
PMCID: PMC3940040  PMID: 24393035
γ-aminobutyric acid (GABA); blood pressure/hypertension; ion homoeostasis; K+–Cl− co-transporter 2 (KCC2); K+–Cl− co-transporter 3 (KCC3); Na+–Cl− co-transporter (NCC); Na+–K+–2Cl− co-transporter 1 (NKCC1); protein kinase; signal transduction; CCC, cation–Cl− co-transporter; CCT, conserved C-terminal; CTD, C-terminal cytoplasmic domain; ERK1, extracellular-signal-regulated kinase 1; ES, embryonic stem; HEK, human embryonic kidney; HRP, horseradish peroxidase; KCC, K+–Cl− co-transporter; LDS, lithium dodecyl sulfate; NCC, Na+–Cl− co-transporter; N[K]CC, Na+–K+ ion co-transporter; NKCC, Na+–K+–2Cl− co-transporter; NTD, N-terminal cytoplasmic domain; OSR1, oxidative stress-responsive kinase 1; SLC12, solute carrier family 12; SPAK, SPS1-related proline/alanine-rich kinase; TTBS, Tris-buffered saline containing Tween 20; WNK, WNK lysine-deficient protein kinase; XIC, extracted ion chromatogram
21.  Investigation of LKB1 Ser431 phosphorylation and Cys433 farnesylation using mouse knockin analysis reveals an unexpected role of prenylation in regulating AMPK activity 
Biochemical Journal  2014;458(Pt 1):41-56.
The LKB1 tumour suppressor protein kinase functions to activate two isoforms of AMPK (AMP-activated protein kinase) and 12 members of the AMPK-related family of protein kinases. The highly conserved C-terminal residues of LKB1 are phosphorylated (Ser431) by PKA (cAMP-dependent protein kinase) and RSK (ribosomal S6 kinase) and farnesylated (Cys433) within a CAAX motif. To better define the role that these post-translational modifications play, we created homozygous LKB1S431A/S431A and LKB1C433S/C433S knockin mice. These animals were viable, fertile and displayed no overt phenotypes. Employing a farnesylation-specific monoclonal antibody that we generated, we established by immunoprecipitation that the vast majority, if not all, of the endogenous LKB1 is prenylated. Levels of LKB1 localized at the membrane of the liver of LKB1C433S/C433S mice and their fibroblasts were reduced substantially compared with the wild-type mice, confirming that farnesylation plays a role in mediating membrane association. Although AMPK was activated normally in the LKB1S431A/S431A animals, we unexpectedly observed in all of the examined tissues and cells taken from LKB1C433S/C433S mice that the basal, as well as that induced by the AMP-mimetic AICAR (5-amino-4-imidazolecarboxamide riboside), AMPK activation, phenformin and muscle contraction were significantly blunted. This resulted in a reduced ability of AICAR to inhibit lipid synthesis in primary hepatocytes isolated from LKB1C433S/C433S mice. The activity of several of the AMPK-related kinases analysed [BRSK1 (BR serine/threonine kinase 1), BRSK2, NUAK1 (NUAK family, SNF1-like kinase 1), SIK3 (salt-inducible kinase 3) and MARK4 (MAP/microtubule affinity-regulating kinase 4)] was not affected in tissues derived from LKB1S431A/S431A or LKB1C433S/C433S mice. Our observations reveal for the first time that farnesylation of LKB1 is required for the activation of AMPK. Previous reports have indicated that a pool of AMPK is localized at the plasma membrane as a result of myristoylation of its regulatory AMPKβ subunit. This raises the possibility that LKB1 farnesylation and myristoylation of AMPKβ might promote the interaction and co-localization of these enzymes on a two-dimensional membrane surface and thereby promote efficient activation of AMPK.
Our observations reveal a significant role for the farnesylation of LKB1 being required for the efficient activation of AMPK. Our findings also cast doubt on previous claims that phosphorylation of Ser431 was essential for orchestrating neuronal cell polarity and embryo development.
PMCID: PMC3898322  PMID: 24295069
5-amino-4-imidazolecarboxamide riboside (AICAR); AMP-activated protein kinase-related kinase (AMPK-related kinase); monoclonal antibody; phenformin; SAD-A/SAD-B kinase; signal transduction; ACC, acetyl-CoA carboxylase; ACTH, adrenocorticotropic hormone; AICAR, 5-amino-4-imidazolecarboxamide riboside; AMPK, AMP-activated protein kinase; ARK5, AMPK-related protein kinase 5; BDNF, brain-derived neurotrophic factor; BiP, immunoglobulin heavy-chain-binding protein; BRSK, BR serine/threonine kinase; DMEM, Dulbecco's modified Eagle's medium; EDL, extensor digitorum longus; ER, endoplasmic reticulum; ERK, extracellular-signal-regulated kinase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HA, haemagglutinin; HEK, human embryonic kidney; HRP, horseradish peroxidase; HSP90, heat-shock protein 90; MAPK, mitogen-activated protein kinase; MAPKAPK, MAPKAP (MAPK-activated protein) kinase; MARK4, MAP/microtubule affinity-regulating kinase 4; MEF, mouse embryonic fibroblast; mTOR, mammalian target of rapamycin; NUAK1, NUAK family, SNF1-like kinase; PDK1, phosphoinositide-dependent kinase 1; PH, pleckstrin homology; PI3K, phosphoinositide 3-kinase; PKA, cAMP-dependent protein kinase; raptor, regulatory associated protein of mTOR; RSK, ribosomal S6 kinase; SIK3, salt-inducible kinase 3; STRAD, STE20-related kinase adaptor; TBC1D1, TBC (Tre-2/Bub2/Cdc16) domain family, member 1
22.  Kinase inhibitors arrest neurodegeneration in cell and C. elegans models of LRRK2 toxicity 
Human Molecular Genetics  2012;22(2):328-344.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most frequent known cause of late-onset Parkinson's disease (PD). To explore the therapeutic potential of small molecules targeting the LRRK2 kinase domain, we characterized two LRRK2 kinase inhibitors, TTT-3002 and LRRK2-IN1, for their effects against LRRK2 activity in vitro and in Caenorhabditis elegans models of LRRK2-linked neurodegeneration. TTT-3002 and LRRK2-IN1 potently inhibited in vitro kinase activity of LRRK2 wild-type and mutant proteins, attenuated phosphorylation of cellular LRRK2 and rescued neurotoxicity of mutant LRRK2 in transfected cells. To establish whether LRRK2 kinase inhibitors can mitigate pathogenesis caused by different mutations including G2019S and R1441C located within and outside of the LRRK2 kinase domain, respectively, we evaluated effects of TTT-3002 and LRRK2-IN1 against R1441C- and G2019S-induced neurodegeneration in C. elegans models. TTT-3002 and LRRK2-IN1 rescued the behavioral deficit characteristic of dopaminergic impairment in transgenic C. elegans expressing human R1441C- and G2019S-LRRK2. The inhibitors displayed nanomolar to low micromolar rescue potency when administered either pre-symptomatically or post-symptomatically, indicating both prevention and reversal of the dopaminergic deficit. The same treatments also led to long-lasting prevention and rescue of neurodegeneration. In contrast, TTT-3002 and LRRK2-IN1 were ineffective against the neurodegenerative phenotype in transgenic worms carrying the inhibitor-resistant A2016T mutation of LRRK2, suggesting that they elicit neuroprotective effects in vivo by targeting LRRK2 specifically. Our findings indicate that the LRRK2 kinase activity is critical for neurodegeneration caused by R1441C and G2019S mutations, suggesting that kinase inhibition of LRRK2 may represent a promising therapeutic strategy for PD.
PMCID: PMC3526163  PMID: 23065705
23.  Characterization of WZ4003 and HTH-01-015 as selective inhibitors of the LKB1-tumour-suppressor-activated NUAK kinases 
Biochemical Journal  2013;457(Pt 1):215-225.
The related NUAK1 and NUAK2 are members of the AMPK (AMP-activated protein kinase) family of protein kinases that are activated by the LKB1 (liver kinase B1) tumour suppressor kinase. Recent work suggests they play important roles in regulating key biological processes including Myc-driven tumorigenesis, senescence, cell adhesion and neuronal polarity. In the present paper we describe the first highly specific protein kinase inhibitors of NUAK kinases namely WZ4003 and HTH-01-015. WZ4003 inhibits both NUAK isoforms (IC50 for NUAK1 is 20 nM and for NUAK2 is 100 nM), whereas HTH-01-015 inhibits only NUAK1 (IC50 is 100 nM). These compounds display extreme selectivity and do not significantly inhibit the activity of 139 other kinases that were tested including ten AMPK family members. In all cell lines tested, WZ4003 and HTH-01-015 inhibit the phosphorylation of the only well-characterized substrate, MYPT1 (myosin phosphate-targeting subunit 1) that is phosphorylated by NUAK1 at Ser445. We also identify a mutation (A195T) that does not affect basal NUAK1 activity, but renders it ~50-fold resistant to both WZ4003 and HTH-01-015. Consistent with NUAK1 mediating the phosphorylation of MYPT1 we find that in cells overexpressing drug-resistant NUAK1[A195T], but not wild-type NUAK1, phosphorylation of MYPT1 at Ser445 is no longer suppressed by WZ4003 or HTH-01-015. We also demonstrate that administration of WZ4003 and HTH-01-015 to MEFs (mouse embryonic fibroblasts) significantly inhibits migration in a wound-healing assay to a similar extent as NUAK1-knockout. WZ4003 and HTH-01-015 also inhibit proliferation of MEFs to the same extent as NUAK1 knockout and U2OS cells to the same extent as NUAK1 shRNA knockdown. We find that WZ4003 and HTH-01-015 impaired the invasive potential of U2OS cells in a 3D cell invasion assay to the same extent as NUAK1 knockdown. The results of the present study indicate that WZ4003 and HTH-01-015 will serve as useful chemical probes to delineate the biological roles of the NUAK kinases.
We describe the discovery of structurally diverse kinase inhibitors to dissect the physiological roles of the NUAK isoforms. We recommend use of an inhibitor-resistant NUAK1[A195T] mutant to verify that the physiological effects of these compounds is indeed mediated through inhibition of NUAKs
PMCID: PMC3969223  PMID: 24171924
AMP-activated protein kinase (AMPK); AMPK-related kinase 5 (ARK5); kinase inhibitor; kinase profiling; liver kinase B1 (LKB1); myosin phosphate-targeting subunit 1(MYPT1); sucrose-non-fermenting protein kinase/AMPKrelated protein kinase (SNARK); ACC, acetyl-CoA carboxylase; AMPK, AMP-activated protein kinase; BRSK, brain-specific kinase; DMEM, Dulbecco’s modified Eagle’s medium; HA, haemagglutinin; HEK, human embryonic kidney; LKB1, liver kinase B1; MARK, microtubule-affinity-regulating kinase; MEF, mouse embryonic fibroblast; MYPT1, myosin phosphate-targeting subunit 1; NF-κB, nuclear factor κB; PEI, polyethylenimine; PP1, protein phosphatase 1; SIK, salt-induced kinase
24.  Structural determinants for ERK5 (MAPK7) and leucine rich repeat kinase 2 activities of benzo[e]pyrimido-[5,4-b]diazepine-6(11H)-ones 
The benzo[e]pyrimido-[5,4-b]diazepine-6(11H)-one core was discovered as a novel ERK5 (also known as MAPK7 and BMK1) inhibitor scaffold, previously. Further structure–activity relationship studies of this scaffold led to the discovery of ERK5-IN-1 (26) as the most selective and potent ERK5 inhibitor reported to date. 26 potently inhibits ERK5 biochemically with an IC50 of 0.162 ± 0.006 μM and in cells with a cellular EC50 for inhibiting epidermal growth factor induced ERK5 autophosphorylation of 0.09 ± 0.03 μM. Furthermore, 26 displays excellent selectivity over other kinases with a KINOMEscan selectivity score (S10) of 0.007, and exhibits exceptional bioavailability (F%) of 90% in mice. 26 will serve as a valuable tool compound to investigate the ERK5 signaling pathway and as a starting point for developing an ERK5 directed therapeutic agent.
Graphical abstract
•Structural determinants of benzo[e]pyrimido-[5,4-b]diazepine-6(11H)-ones for ERK5.•Highly selective ERK5 inhibitor with good efficacy both in vitro and in vivo.•Represents a good template for developing ERK5 directed therapeutic agent.
PMCID: PMC3914206  PMID: 24239623
ERK5 inhibitor; Kinase selectivity; Benzo[e]pyrimido-[5,4-b]diazepine-6(11H)-one; BMK1, big MAP kinase 1; DIEA, N,N-diisopropylethylamine; DCAMKL2, doublecortin and CaM kinase-like 2; DMA, N,N-dimethylacetamide; EGF, epidermal growth factor; ERK5, extracelluar-signal-regulated kinase 5; HCC, hepatocellular carcinoma; LRRK2, leucine rich repeat kinase 2; MAPK, mitogen-activated protein kinase; ERK5, mitogen-activated protein kinase 7; MEK5, MAP kinase kinase 5; Pd2(dba)3, tris(dibenzylideneacetone)dipalladium-(0); PLK, polo-like kinase; PML, promyelocytic leukemia protein; RSK, ribosomal S6 kinase; SAR, structure–activity relationship; X-phos, 2-dicyclohexylphosphino-2′,4′,6′-triisopropyl-biphenyl
25.  N-terminal Serine Dephosphorylation Is Required for KCC3 Cotransporter Full Activation by Cell Swelling* 
The Journal of Biological Chemistry  2013;288(44):31468-31476.
Background: KCC3 lacking the two known phosphorylation sites is still regulated by cell swelling and WNK3.
Results: Dephosphorylation of serine 96 is necessary for full activation of the cotransporter.
Conclusion: Serine 96 is a third phospho-site involved in KCC3 regulation.
Significance: The finding of new phosphorylation sites sheds light on an increasingly complex regulation of K+:Cl− cotransporters.
The K+:Cl− cotransporter (KCC) activity is modulated by phosphorylation/dephosphorylation processes. In isotonic conditions, KCCs are inactive and phosphorylated, whereas hypotonicity promotes their dephosphorylation and activation. Two phosphorylation sites (Thr-991 and Thr-1048) in KCC3 have been found to be critical for its regulation. However, here we show that the double mutant KCC3-T991A/T1048A could be further activated by hypotonicity, suggesting that additional phosphorylation site(s) are involved. We observed that in vitro activated STE20/SPS1-related proline/alanine-rich kinase (SPAK) complexed to its regulatory MO25 subunit phosphorylated KCC3 at Ser-96 and that in Xenopus laevis oocytes Ser-96 of human KCC3 is phosphorylated in isotonic conditions and becomes dephosphorylated during incubation in hypotonicity, leading to a dramatic increase in KCC3 function. Additionally, WNK3, which inhibits the activity of KCC3, promoted phosphorylation of Ser-96 as well as Thr-991 and Thr-1048. These observations were corroborated in HEK293 cells stably transfected with WNK3. Mutation of Ser-96 alone (KCC3-S96A) had no effect on the activity of the cotransporter when compared with wild type KCC3. However, when compared with the double mutant KCC3-T991A/T1048A, the triple mutant KCC3-S96A/T991A/T1048A activity in isotonic conditions was significantly higher, and it was not further increased by hypotonicity or inhibited by WNK3. We conclude that serine residue 96 of human KCC3 is a third site that has to be dephosphorylated for full activation of the cotransporter during hypotonicity.
PMCID: PMC3814743  PMID: 24043619
Hypertension; Phosphorylation; Physiology; Potassium Transport; Signal Transduction

Results 1-25 (60)