PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Genetic and structural validation of Aspergillus fumigatus N-acetylphosphoglucosamine mutase as an antifungal target 
Bioscience Reports  2013;33(5):e00063.
Aspergillus fumigatus is the causative agent of IA (invasive aspergillosis) in immunocompromised patients. It possesses a cell wall composed of chitin, glucan and galactomannan, polymeric carbohydrates synthesized by processive glycosyltransferases from intracellular sugar nucleotide donors. Here we demonstrate that A. fumigatus possesses an active AfAGM1 (A. fumigatus N-acetylphosphoglucosamine mutase), a key enzyme in the biosynthesis of UDP (uridine diphosphate)–GlcNAc (N-acetylglucosamine), the nucleotide sugar donor for chitin synthesis. A conditional agm1 mutant revealed the gene to be essential. Reduced expression of agm1 resulted in retarded cell growth and altered cell wall ultrastructure and composition. The crystal structure of AfAGM1 revealed an amino acid change in the active site compared with the human enzyme, which could be exploitable in the design of selective inhibitors. AfAGM1 inhibitors were discovered by high-throughput screening, inhibiting the enzyme with IC50s in the low μM range. Together, these data provide a platform for the future development of AfAGM1 inhibitors with antifungal activity.
doi:10.1042/BSR20130053
PMCID: PMC3763426  PMID: 23844980
cell wall; drug target; enzyme; inhibitor; nucleotide sugar; protein structure; AfAGM1, A. fumigatus N-acetylphosphoglucosamine mutase; AGM1, N-acetylphosphoglucosamine mutase; CaAGM1, Candida albicans AGM1; Fru-6P, fructose 6-phosphate; G6PDH, glucose-6-phosphate dehydrogenase; GlcNAc, N-acetylglucosamine; GlcNAc-1P, N-acetylglucosamine-1-phosphate; GlcN-6P, glucosamine 6-phosphate; GFA1, glutamine: Fru-6P amidotransferase; GNA1, GlcN-6P acetyltransferase; IA, invasive aspergillosis; MIC, minimum inhibitory concentration; MM, minimal medium; RMSD, root mean square deviation; UAP1, UDP–GlcNAc pyrophosphorylase; UDP, uridine diphosphate
2.  O-GlcNAc transferase invokes nucleotide sugar pyrophosphate participation in catalysis 
Nature chemical biology  2012;8(12):969-974.
Protein O-GlcNAcylation is an essential post-translational modification on hundreds of intracellular proteins in metazoa, catalyzed by O-GlcNAc transferase using unknown mechanisms of transfer and substrate recognition. Through crystallographic snapshots and mechanism-inspired chemical probes, we define how human O-GlcNAc transferase recognizes the sugar donor and acceptor peptide and employs a novel catalytic mechanism of glycosyl transfer, involving the sugar donor α-phosphate as the catalytic base, as well as an essential lysine. This mechanism appears to be a unique evolutionary solution to the spatial constraints imposed by a bulky protein acceptor substrate, and explains the unexpected specificity of a recently reported metabolic O-GlcNAc transferase inhibitor.
doi:10.1038/nchembio.1108
PMCID: PMC3509171  PMID: 23103942
3.  O-GlcNAcylation of TAB1 modulates TAK1-mediated cytokine release 
The EMBO Journal  2012;31(6):1394-1404.
O-GlcNAcylation of TAB1 modulates TAK1-mediated cytokine release
The protein kinase TAK1 plays an important role in pro-inflammatory cytokine signalling. Interleukin-1- and osmotic stress-induced O-GlcNAcylation of its regulatory subunit TAB1 is required for full TAK1 activation to induce downstream cytokine production, linking this protein modification to innate immunity signalling.
Transforming growth factor (TGF)-β-activated kinase 1 (TAK1) is a key serine/threonine protein kinase that mediates signals transduced by pro-inflammatory cytokines such as transforming growth factor-β, tumour necrosis factor (TNF), interleukin-1 (IL-1) and wnt family ligands. TAK1 is found in complex with binding partners TAB1–3, phosphorylation and ubiquitination of which has been found to regulate TAK1 activity. In this study, we show that TAB1 is modified with N-acetylglucosamine (O-GlcNAc) on a single site, Ser395. With the help of a novel O-GlcNAc site-specific antibody, we demonstrate that O-GlcNAcylation of TAB1 is induced by IL-1 and osmotic stress, known inducers of the TAK1 signalling cascade. By reintroducing wild-type or an O-GlcNAc-deficient mutant TAB1 (S395A) into Tab1−/− mouse embryonic fibroblasts, we determined that O-GlcNAcylation of TAB1 is required for full TAK1 activation upon stimulation with IL-1/osmotic stress, for downstream activation of nuclear factor κB and finally production of IL-6 and TNFα. This is one of the first examples of a single O-GlcNAc site on a signalling protein modulating a key innate immunity signalling pathway.
doi:10.1038/emboj.2012.8
PMCID: PMC3321193  PMID: 22307082
cytokine; glycobiology; innate immunity; O-GlcNAc; signal transduction
4.  Clinical validity of plasma and urinary desmosine as biomarkers for chronic obstructive pulmonary disease 
Thorax  2012;67(6):502-508.
Background
Although an increased concentration of degraded elastin products in patients with chronic obstructive pulmonary disease (COPD) has been reported for many years, its clinical validity and utility remain uncertain due to technical difficulties, small study groups and the unknown relationship between exacerbation and elastin degradation. The objectives of this study were to determine the validity of urinary and blood total desmosine/isodesmosine in patients with COPD and asthma and to evaluate their relationship to exacerbation status and lung function.
Methods
Urinary and blood desmosine levels were measured using validated isotopic dilution liquid chromatography–tandem mass spectrometry methods.
Results
390 study participants were recruited from the following groups: healthy volunteers, stable asthma, stable and ‘during an exacerbation’ COPD. Compared with healthy non-smokers, we found increased urinary or blood desmosine levels in patients with COPD, but no differences in patients with asthma or healthy smokers. The elevation of urinary desmosine levels was associated with the exacerbation status in patients with COPD. Approximately 40% of patients with stable and ‘during an exacerbation’ COPD showed elevated blood desmosine levels. Blood desmosine levels were strongly associated with age and were negatively correlated with lung diffusing capacity for carbon monoxide.
Conclusion
The results suggest that urinary desmosine levels are raised by exacerbations of COPD whereas blood desmosine levels are elevated in a subgroup of patients with stable COPD and reduced lung diffusing capacity. The authors speculate that a raised blood desmosine level may identify patients with increased elastin degradation suitable for targeted therapy. Future prospective studies are required to investigate this hypothesis.
doi:10.1136/thoraxjnl-2011-200279
PMCID: PMC3358730  PMID: 22250098
Desmosine; emphysema; COPD; biomarker; COPD exacerbations; lung physiology; lung proteases; asthma pharmacology; COPD pharmacology; respiratory infection; COPD mechanisms; COPD pathology; asthma; asthma epidemiology; asthma mechanisms; allergic alveolitis; allergic lung disease; occupational lung disease; tobacco and the lung; asthma guidelines

Results 1-4 (4)