PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  GLUT4 Defects in Adipose Tissue Are Early Signs of Metabolic Alterations in Alms1GT/GT, a Mouse Model for Obesity and Insulin Resistance 
PLoS ONE  2014;9(10):e109540.
Dysregulation of signaling pathways in adipose tissue leading to insulin resistance can contribute to the development of obesity-related metabolic disorders. Alström Syndrome, a recessive ciliopathy, caused by mutations in ALMS1, is characterized by progressive metabolic alterations such as childhood obesity, hyperinsulinemia, and type 2 diabetes. Here we investigated the role of Alms1 disruption in AT expansion and insulin responsiveness in a murine model for Alström Syndrome. A gene trap insertion in Alms1 on the insulin sensitive C57BL6/Ei genetic background leads to early hyperinsulinemia and a progressive increase in body weight. At 6 weeks of age, before the onset of the metabolic disease, the mutant mice had enlarged fat depots with hypertrophic adipocytes, but without signs of inflammation. Expression of lipogenic enzymes was increased. Pre-adipocytes isolated from mutant animals demonstrated normal adipogenic differentiation but gave rise to mature adipocytes with reduced insulin-stimulated glucose uptake. Assessment of whole body glucose homeostasis revealed glucose intolerance. Insulin stimulation resulted in proper AKT phosphorylation in adipose tissue. However, the total amount of glucose transporter 4 (SLC4A2) and its translocation to the plasma membrane were reduced in mutant adipose depots compared to wildtype littermates. Alterations in insulin stimulated trafficking of glucose transporter 4 are an early sign of metabolic dysfunction in Alström mutant mice, providing a possible explanation for the reduced glucose uptake and the compensatory hyperinsulinemia. The metabolic signaling deficits either reside downstream or are independent of AKT activation and suggest a role for ALMS1 in GLUT4 trafficking. Alström mutant mice represent an interesting model for the development of metabolic disease in which adipose tissue with a reduced glucose uptake can expand by de novo lipogenesis to an obese state.
doi:10.1371/journal.pone.0109540
PMCID: PMC4192353  PMID: 25299671
2.  Personality and Psychiatric Disorders in Women Affected by Polycystic Ovary Syndrome 
Background: Polycystic ovary syndrome (PCOS) is the most prevalent endocrine disorder among fertile women. Studies show reduced quality of life, anxiety, depression, body dissatisfaction, eating disorder, and sexual dysfunction, but the etiology of these disturbs remains still debated. The aim of our study is to verify whether this hyperandrogenic syndrome characterizes a strong psycho(patho)logical personality.
Method: Sixty PCOS subjects (mean age 25.8 ± 4.7 years) were evaluated by anthropometric, metabolic, hormonal, clinical, and psychological parameters. After the certainty of the diagnosis of PCOS, the Rorschach test, according to Exner’s comprehensive system (CS) and the Millon Clinical Multiaxial Inventory-III (MCMI-III) were administered to each patient. The control group, on which the comparison was carried out, was composed by 40 healthy and aged compared women who were exclusively administered the Rorschach test according to CS.
Results: MCMI-III evidenced axis II DSM-IV personality disorders [4.1% schizoid, depressive, sadistic, negativistic (passive–aggressive), and masochistic, 6.1% avoiding, 12.2% dependent, 20.4% histrionic, 16.3% narcissistic, 2.0% obsessive–compulsive], and axis I DSM-IV psychiatric disorders: 10.2% anxiety, 2.0% somatoform disorder and bipolar disorder, 16.3% major depressive disorder. Finally, we found 44.9% delusional disorder and 4.1% thought disorder. Rorschach test’s results show 53.1% reduced coping abilities and social skills, 55.1% depression, 30.6% perceptual distortion and cognitive slippage, 24.5% constantly alert and worry, 8.1% at risk for suicide, and finally about 50% of our patients had chronic stress.
Conclusion: PCOS women have relevant personality and psychiatric disorders, when compared with normal subjects.
doi:10.3389/fendo.2014.00185
PMCID: PMC4228916  PMID: 25429283
polycystic ovary syndrome; personality; Rorschach; MCMI-III; psychopathology; personality disorder; psychiatric disorder
3.  The progression from obesity to type 2 diabetes in Alström syndrome 
Pediatric Diabetes  2011;13(1):59-67.
Background
Alström syndrome (ALMS) is a rare autosomal recessive monogenic disease associated with obesity, hyperinsulinemia and alterations of glucose metabolism that often lead to the development of type 2 diabetes in a young age.
Objective
Relationship between weight and metabolism has been studied in a group of ALMS patients and matched controls.
Research design and methods
Fifteen ALMS patients (8 M, 7 F, aged 3-51 yrs) were compared in a cross-sectional study with an age- and weight-matched control population. Anthropometric parameters, fat mass, glucose and insulin secretion in basal and dynamic (OGTT) conditions were measured. Further anthropometric and body composition data were obtained from an International group of 27 ALMS patients (13 M, 14 F, age range: 4-29 yrs).
Results
In ALMS we observed an inverse correlation between age and SDS for height, weight and BMI. The OGTT glycemic curves of ALMS subjects were similar to those of age-matched controls, while insulin response was clearly greater. In ALMS individuals the insulin response showed a reduction with age. We documented pathologic values of the derived indices HOMA-IR, ISI, HOMA%β cell and Insulinogenic Index in ALMS, but unlike the insulin-resistance indices, the beta-cell function indices showed a significant reduction with age.
Conclusions
In ALMS the progression from the early onset obesity towards the impaired fasting glucose or IGT and overt diabetes is mostly due to a progressive failure of β-cell insulin secretion without any further worsening of insulin resistance with age, even in the presence of weight reduction.
doi:10.1111/j.1399-5448.2011.00789.x
PMCID: PMC3345208  PMID: 21722283
Alström syndrome; ALMS1; obesity; diabetes; insulin resistance
4.  Sustained Exendin-4 Secretion through Gene Therapy Targeting Salivary Glands in Two Different Rodent Models of Obesity/Type 2 Diabetes 
PLoS ONE  2012;7(7):e40074.
Exendin-4 (Ex-4) is a Glucagon-like peptide 1 (GLP-1) receptor agonist approved for the treatment of Type 2 Diabetes (T2DM), which requires daily subcutaneous administration. In T2DM patients, GLP-1 administration is reported to reduce glycaemia and HbA1c in association with a modest, but significant weight loss. The aim of present study was to characterize the site-specific profile and metabolic effects of Ex-4 levels expressed from salivary glands (SG) in vivo, following adeno-associated virus-mediated (AAV) gene therapy in two different animal models of obesity prone to impaired glucose tolerance and T2DM, specifically, Zucker fa/fa rats and high fed diet (HFD) mice. Following percutaneous injection of AAV5 into the salivary glands, biologically active Ex-4 was detected in the blood of both animal models and expression persisted in salivary gland ductal cell until the end of the study. In treated mice, Ex-4 levels averaged 138.9±42.3 pmol/L on week 6 and in treated rats, mean circulating Ex-4 levels were 238.2±72 pmol/L on week 4 and continued to increase through week 8. Expression of Ex-4 resulted in a significant decreased weight gain in both mice and rats, significant improvement in glycemic control and/or insulin sensitivity as well as visceral adipose tissue adipokine profile. In conclusion, these results suggest that sustained site-specific expression of Ex-4 following AAV5-mediated gene therapy is feasible and may be useful in the treatment of obesity as well as trigger improved metabolic profile.
doi:10.1371/journal.pone.0040074
PMCID: PMC3396615  PMID: 22808093
5.  Cannabinoid Receptor Stimulation Impairs Mitochondrial Biogenesis in Mouse White Adipose Tissue, Muscle, and Liver 
Diabetes  2010;59(11):2826-2836.
OBJECTIVE
Cannabinoid type 1 (CB1) receptor is involved in whole-body and cellular energy metabolism. We asked whether CB1 receptor stimulation was able to decrease mitochondrial biogenesis in different metabolically active tissues of obese high-fat diet (HFD)-fed mice.
RESEARCH DESIGN AND METHODS
The effects of selective CB1 agonist arachidonyl-2-chloroethanolamide (ACEA) and endocannabinoids anandamide and 2-arachidonoylglycerol on endothelial nitric oxide synthase (eNOS) expression were examined, as were mitochondrial DNA amount and mitochondrial biogenesis parameters in cultured mouse and human white adipocytes. These parameters were also investigated in white adipose tissue (WAT), muscle, and liver of mice chronically treated with ACEA. Moreover, p38 mitogen-activated protein kinase (MAPK) phosphorylation was investigated in WAT and isolated mature adipocytes from eNOS−/− and wild-type mice. eNOS, p38 MAPK, adenosine monophosphate–activated protein kinase (AMPK), and mitochondrial biogenesis were investigated in WAT, muscle, and liver of HFD mice chronically treated with ACEA.
RESULTS
ACEA decreased mitochondrial biogenesis and eNOS expression, activated p38 MAPK, and reduced AMPK phosphorylation in white adipocytes. The ACEA effects on mitochondria were antagonized by nitric oxide donors and by p38 MAPK silencing. White adipocytes from eNOS−/− mice displayed higher p38 MAPK phosphorylation than wild-type animals under basal conditions, and ACEA was ineffective in cells lacking eNOS. Moreover, mitochondrial biogenesis was downregulated, while p38 MAPK phosphorylation was increased and AMPK phosphorylation was decreased in WAT, muscle, and liver of ACEA-treated mice on a HFD.
CONCLUSIONS
CB1 receptor stimulation decreases mitochondrial biogenesis in white adipocytes, through eNOS downregulation and p38 MAPK activation, and impairs mitochondrial function in metabolically active tissues of dietary obese mice.
doi:10.2337/db09-1881
PMCID: PMC2963541  PMID: 20739683
6.  ALMS1-Deficient Fibroblasts Over-Express Extra-Cellular Matrix Components, Display Cell Cycle Delay and Are Resistant to Apoptosis 
PLoS ONE  2011;6(4):e19081.
Alström Syndrome (ALMS) is a rare genetic disorder (483 living cases), characterized by many clinical manifestations, including blindness, obesity, type 2 diabetes and cardiomyopathy. ALMS is caused by mutations in the ALMS1 gene, encoding for a large protein with implicated roles in ciliary function, cellular quiescence and intracellular transport. Patients with ALMS have extensive fibrosis in nearly all tissues resulting in a progressive organ failure which is often the ultimate cause of death. To focus on the role of ALMS1 mutations in the generation and maintenance of this pathological fibrosis, we performed gene expression analysis, ultrastructural characterization and functional assays in 4 dermal fibroblast cultures from ALMS patients. Using a genome-wide gene expression analysis we found alterations in genes belonging to specific categories (cell cycle, extracellular matrix (ECM) and fibrosis, cellular architecture/motility and apoptosis). ALMS fibroblasts display cytoskeleton abnormalities and migration impairment, up-regulate the expression and production of collagens and despite the increase in the cell cycle length are more resistant to apoptosis. Therefore ALMS1-deficient fibroblasts showed a constitutively activated myofibroblast phenotype even if they do not derive from a fibrotic lesion. Our results support a genetic basis for the fibrosis observed in ALMS and show that both an excessive ECM production and a failure to eliminate myofibroblasts are key mechanisms. Furthermore, our findings suggest new roles for ALMS1 in both intra- and extra-cellular events which are essential not only for the normal cellular function but also for cell-cell and ECM-cell interactions.
doi:10.1371/journal.pone.0019081
PMCID: PMC3082548  PMID: 21541333
7.  Clonal Characterization of Rat Muscle Satellite Cells: Proliferation, Metabolism and Differentiation Define an Intrinsic Heterogeneity 
PLoS ONE  2010;5(1):e8523.
Satellite cells (SCs) represent a distinct lineage of myogenic progenitors responsible for the postnatal growth, repair and maintenance of skeletal muscle. Distinguished on the basis of their unique position in mature skeletal muscle, SCs were considered unipotent stem cells with the ability of generating a unique specialized phenotype. Subsequently, it was demonstrated in mice that opposite differentiation towards osteogenic and adipogenic pathways was also possible. Even though the pool of SCs is accepted as the major, and possibly the only, source of myonuclei in postnatal muscle, it is likely that SCs are not all multipotent stem cells and evidences for diversities within the myogenic compartment have been described both in vitro and in vivo. Here, by isolating single fibers from rat flexor digitorum brevis (FDB) muscle we were able to identify and clonally characterize two main subpopulations of SCs: the low proliferative clones (LPC) present in major proportion (∼75%) and the high proliferative clones (HPC), present instead in minor amount (∼25%). LPC spontaneously generate myotubes whilst HPC differentiate into adipocytes even though they may skip the adipogenic program if co-cultured with LPC. LPC and HPC differ also for mitochondrial membrane potential (ΔΨm), ATP balance and Reactive Oxygen Species (ROS) generation underlying diversities in metabolism that precede differentiation. Notably, SCs heterogeneity is retained in vivo. SCs may therefore be comprised of two distinct, though not irreversibly committed, populations of cells distinguishable for prominent differences in basal biological features such as proliferation, metabolism and differentiation. By these means, novel insights on SCs heterogeneity are provided and evidences for biological readouts potentially relevant for diagnostic purposes described.
doi:10.1371/journal.pone.0008523
PMCID: PMC2796166  PMID: 20049087
8.  Cannabinoid Type 1 Receptor Blockade Promotes Mitochondrial Biogenesis Through Endothelial Nitric Oxide Synthase Expression in White Adipocytes 
Diabetes  2008;57(8):2028-2036.
OBJECTIVE—Cannabinoid type 1 (CB1) receptor blockade decreases body weight and adiposity in obese subjects; however, the underlying mechanism is not yet fully understood. Nitric oxide (NO) produced by endothelial NO synthase (eNOS) induces mitochondrial biogenesis and function in adipocytes. This study was undertaken to test whether CB1 receptor blockade increases the espression of eNOS and mitochondrial biogenesis in white adipocytes.
RESEARCH DESIGN AND METHODS—We examined the effects on eNOS and mitochondrial biogenesis of selective pharmacological blockade of CB1 receptors by SR141716 (rimonabant) in mouse primary white adipocytes. We also examined eNOS expression and mitochondrial biogenesis in white adipose tissue (WAT) and isolated mature white adipocytes of CB1 receptor–deficient (CB1−/−) and chronically SR141716-treated mice on either a standard or high-fat diet.
RESULTS—SR141716 treatment increased eNOS expression in cultured white adipocytes. Moreover, SR141716 increased mitochondrial DNA amount, mRNA levels of genes involved in mitochondrial biogenesis, and mitochondrial mass and function through eNOS induction, as demonstrated by reversal of SR141716 effects by small interfering RNA–mediated decrease in eNOS. While high-fat diet–fed wild-type mice showed reduced eNOS expression and mitochondrial biogenesis in WAT and isolated mature white adipocytes, genetic CB1 receptor deletion or chronic treatment with SR141716 restored these parameters to the levels observed in wild-type mice on the standard diet, an effect linked to the prevention of adiposity and body weight increase.
CONCLUSIONS—CB1 receptor blockade increases mitochondrial biogenesis in white adipocytes by inducing the expression of eNOS. This is linked to the prevention of high-fat diet–induced fat accumulation, without concomitant changes in food intake.
doi:10.2337/db07-1623
PMCID: PMC2494670  PMID: 18477809
9.  Early-onset liver mtDNA depletion and late-onset proteinuric nephropathy in Mpv17 knockout mice 
Human Molecular Genetics  2008;18(1):12-26.
In humans, MPV17 mutations are responsible for severe mitochondrial depletion syndrome, mainly affecting the liver and the nervous system. To gain insight into physiopathology of MPV17-related disease, we investigated an available Mpv17 knockout animal model. We found severe mtDNA depletion in liver and, albeit to a lesser extent, in skeletal muscle, whereas hardly any depletion was detected in brain and kidney, up to 1 year after birth. Mouse embryonic fibroblasts did show mtDNA depletion, but only after several culturing passages, or in a serumless culturing medium. In spite of severe mtDNA depletion, only moderate decrease in respiratory chain enzymatic activities, and mild cytoarchitectural alterations, were observed in the Mpv17−/− livers, but neither cirrhosis nor failure ever occurred in this organ at any age. The mtDNA transcription rate was markedly increased in liver, which could contribute to compensate the severe mtDNA depletion. This phenomenon was associated with specific downregulation of Mterf1, a negative modulator of mtDNA transcription. The most relevant clinical features involved skin, inner ear and kidney. The coat of the Mpv17−/− mice turned gray early in adulthood, and 18-month or older mice developed focal segmental glomerulosclerosis (FSGS) with massive proteinuria. Concomitant degeneration of cochlear sensory epithelia was reported as well. These symptoms were associated with significantly shorter lifespan. Coincidental with the onset of FSGS, there was hardly any mtDNA left in the glomerular tufts. These results demonstrate that Mpv17 controls mtDNA copy number by a highly tissue- and possibly cytotype-specific mechanism.
doi:10.1093/hmg/ddn309
PMCID: PMC2644642  PMID: 18818194

Results 1-9 (9)