Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Inflammation and pancreatic cancer: molecular and functional interactions between S100A8, S100A9, NT-S100A8 and TGFβ1 
In order to gain further insight on the crosstalk between pancreatic cancer (PDAC) and stromal cells, we investigated interactions occurring between TGFβ1 and the inflammatory proteins S100A8, S100A9 and NT-S100A8, a PDAC-associated S100A8 derived peptide, in cell signaling, intracellular calcium (Cai2+) and epithelial to mesenchymal transition (EMT). NF-κB, Akt and mTOR pathways, Cai2+ and EMT were studied in well (Capan1 and BxPC3) and poorly differentiated (Panc1 and MiaPaCa2) cell lines.
NT-S100A8, one of the low molecular weight N-terminal peptides from S100A8 to be released by PDAC-derived proteases, shared many effects on NF-κB, Akt and mTOR signaling with S100A8, but mainly with TGFβ1. The chief effects of S100A8, S100A9 and NT-S100A8 were to inhibit NF-κB and stimulate mTOR; the molecules inhibited Akt in Smad4-expressing, while stimulated Akt in Smad4 negative cells. By restoring Smad4 expression in BxPC3 and silencing it in MiaPaCa2, S100A8 and NT-S100A8 were shown to inhibit NF-κB and Akt in the presence of an intact TGFβ1 canonical signaling pathway. TGFβ1 counteracted S100A8, S100A9 and NT-S100A8 effects in Smad4 expressing, not in Smad4 negative cells, while it synergized with NT-S100A8 in altering Cai2+ and stimulating PDAC cell growth. The effects of TGFβ1 on both EMT (increased Twist and decreased N-Cadherin expression) and Cai2+ were antagonized by S100A9, which formed heterodimers with TGFβ1 (MALDI-TOF/MS and co-immuno-precipitation).
The effects of S100A8 and S100A9 on PDAC cell signaling appear to be cell-type and context dependent. NT-S100A8 mimics the effects of TGFβ1 on cell signaling, and the formation of complexes between TGFβ1 with S100A9 appears to be the molecular mechanism underlying the reciprocal antagonism of these molecules on cell signaling, Cai2+ and EMT.
PMCID: PMC4108065  PMID: 24670043
Akt; Calcium; Calcium binding proteins; Epithelial to mesenchymal transition; Mass spectrometry (MS); Matrix metalloproteinase (MMP); mTOR; Pancreatic cancer; SMAD transcription factor
2.  Next-Generation Sequencing of Lung Cancer EGFR Exons 18-21 Allows Effective Molecular Diagnosis of Small Routine Samples (Cytology and Biopsy) 
PLoS ONE  2013;8(12):e83607.
Selection of lung cancer patients for therapy with tyrosine kinase inhibitors directed at EGFR requires the identification of specific EGFR mutations. In most patients with advanced, inoperable lung carcinoma limited tumor samples often represent the only material available for both histologic typing and molecular analysis. We defined a next generation sequencing protocol targeted to EGFR exons 18-21 suitable for the routine diagnosis of such clinical samples. The protocol was validated in an unselected series of 80 small biopsies (n=14) and cytology (n=66) specimens representative of the material ordinarily submitted for diagnostic evaluation to three referral medical centers in Italy. Specimens were systematically evaluated for tumor cell number and proportion relative to non-neoplastic cells. They were analyzed in batches of 100-150 amplicons per run, reaching an analytical sensitivity of 1% and obtaining an adequate number of reads, to cover all exons on all samples analyzed. Next generation sequencing was compared with Sanger sequencing. The latter identified 15 EGFR mutations in 14/80 cases (17.5%) but did not detected mutations when the proportion of neoplastic cells was below 40%. Next generation sequencing identified 31 EGFR mutations in 24/80 cases (30.0%). Mutations were detected with a proportion of neoplastic cells as low as 5%. All mutations identified by the Sanger method were confirmed. In 6 cases next generation sequencing identified exon 19 deletions or the L858R mutation not seen after Sanger sequencing, allowing the patient to be treated with tyrosine kinase inhibitors. In one additional case the R831H mutation associated with treatment resistance was identified in an EGFR wild type tumor after Sanger sequencing. Next generation sequencing is robust, cost-effective and greatly improves the detection of EGFR mutations. Its use should be promoted for the clinical diagnosis of mutations in specimens with unfavorable tumor cell content.
PMCID: PMC3871524  PMID: 24376723
3.  Molecular Typing of Lung Adenocarcinoma on Cytological Samples Using a Multigene Next Generation Sequencing Panel 
PLoS ONE  2013;8(11):e80478.
Identification of driver mutations in lung adenocarcinoma has led to development of targeted agents that are already approved for clinical use or are in clinical trials. Therefore, the number of biomarkers that will be needed to assess is expected to rapidly increase. This calls for the implementation of methods probing the mutational status of multiple genes for inoperable cases, for which limited cytological or bioptic material is available. Cytology specimens from 38 lung adenocarcinomas were subjected to the simultaneous assessment of 504 mutational hotspots of 22 lung cancer-associated genes using 10 nanograms of DNA and Ion Torrent PGM next-generation sequencing. Thirty-six cases were successfully sequenced (95%). In 24/36 cases (67%) at least one mutated gene was observed, including EGFR, KRAS, PIK3CA, BRAF, TP53, PTEN, MET, SMAD4, FGFR3, STK11, MAP2K1. EGFR and KRAS mutations, respectively found in 6/36 (16%) and 10/36 (28%) cases, were mutually exclusive. Nine samples (25%) showed concurrent alterations in different genes. The next-generation sequencing test used is superior to current standard methodologies, as it interrogates multiple genes and requires limited amounts of DNA. Its applicability to routine cytology samples might allow a significant increase in the fraction of lung cancer patients eligible for personalized therapy.
PMCID: PMC3827450  PMID: 24236184
4.  Detection of MicroRNAs in Archival Cytology Urine Smears 
PLoS ONE  2013;8(2):e57490.
MicroRNAs’ dysregulation and profiling have been demonstrated to be clinically relevant in urothelial carcinoma (UC). Urine cytology is commonly used as the mainstay non-invasive test for secondary prevention and follow-up of UC patients. Ancillary tools are needed to support cytopathologists in the diagnosis of low-grade UC. The feasibility and reliability of microRNAs profiling by qRT-PCR analysis (miR-145 and miR-205) in archival routine urine cytology smears (affected by fixation/staining [Papanicolau] and room temperature storage) was tested in a series of 15 non-neoplastic and 10 UC urine specimens. Only samples with >5,000 urothelial cells and with <50% of inflammatory cells/red blood cells clusters were considered. Overall, a satisfactory amount of total RNA was obtained from all the considered samples (mean 1.27±1.43 µg, range 0.06–4.60 µg). Twenty nanograms of total RNA have been calculated to be the minimal total RNA concentration for reliable and reproducible miRNAs expression profiling analysis of archival cytological smears (slope = -3.4084; R-squared = 0.99; efficiency = 1.94). miR-145 and miR-205 were significantly downregulated in UC samples in comparison to non-tumor controls. These findings demonstrate that urine archival cytology smears are suitable for obtaining high-quality RNA to be used in microRNAs expression profiling. Further studies should investigate if miRNAs profiling can be successfully translated into clinical practice as diagnostic or prognostic markers.
PMCID: PMC3585351  PMID: 23469001
5.  Laterally transferred elements and high pressure adaptation in Photobacterium profundum strains 
BMC Genomics  2005;6:122.
Oceans cover approximately 70% of the Earth's surface with an average depth of 3800 m and a pressure of 38 MPa, thus a large part of the biosphere is occupied by high pressure environments. Piezophilic (pressure-loving) organisms are adapted to deep-sea life and grow optimally at pressures higher than 0.1 MPa. To better understand high pressure adaptation from a genomic point of view three different Photobacterium profundum strains were compared. Using the sequenced piezophile P. profundum strain SS9 as a reference, microarray technology was used to identify the genomic regions missing in two other strains: a pressure adapted strain (named DSJ4) and a pressure-sensitive strain (named 3TCK). Finally, the transcriptome of SS9 grown under different pressure (28 MPa; 45 MPa) and temperature (4°C; 16°C) conditions was analyzed taking into consideration the differentially expressed genes belonging to the flexible gene pool.
These studies indicated the presence of a large flexible gene pool in SS9 characterized by various horizontally acquired elements. This was verified by extensive analysis of GC content, codon usage and genomic signature of the SS9 genome. 171 open reading frames (ORFs) were found to be specifically absent or highly divergent in the piezosensitive strain, but present in the two piezophilic strains. Among these genes, six were found to also be up-regulated by high pressure.
These data provide information on horizontal gene flow in the deep sea, provide additional details of P. profundum genome expression patterns and suggest genes which could perform critical functions for abyssal survival, including perhaps high pressure growth.
PMCID: PMC1239915  PMID: 16162277

Results 1-5 (5)