Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Telomeres, telomerase and colorectal cancer 
Colorectal cancer (CRC) is the third most common cancer worldwide and, despite improved treatments, is still an important cause of cancer-related deaths. CRC encompasses a complex of diseases arising from a multi-step process of genetic and epigenetic events. Besides heterogeneity in the molecular and biological features of CRC, chromosomal instability is a hallmark of cancer and cancer cells may also circumvent replicative senescence and acquire the ability to sustain unlimited proliferation. Telomere/telomerase interplay is an important mechanism involved in both genomic stability and cellular replicative potential, and its dysfunction plays a key role in the oncogenetic process. The erosion of telomeres, mainly because of cell proliferation, may be accelerated by specific alterations in the genes involved in CRC, such as APC and MSH2. Although there is general agreement that the shortening of telomeres plays a role in the early steps of CRC carcinogenesis by promoting chromosomal instability, the prognostic role of telomere length in CRC is still under debate. The activation of telomerase reverse transcriptase (TERT), the catalytic component of the telomerase complex, allows cancer cells to grow indefinitely by maintaining the length of the telomeres, thus favouring tumour formation/progression. Several studies indicate that TERT increases with disease progression, and most studies suggest that telomerase is a useful prognostic factor. Plasma TERT mRNA may also be a promising marker for the minimally invasive monitoring of disease progression and response to therapy.
PMCID: PMC3934464  PMID: 24616570
Telomere; Telomerase; Telomerase reverse transcriptase; Colorectal cancer; Prognostic marker
2.  ALMS1-Deficient Fibroblasts Over-Express Extra-Cellular Matrix Components, Display Cell Cycle Delay and Are Resistant to Apoptosis 
PLoS ONE  2011;6(4):e19081.
Alström Syndrome (ALMS) is a rare genetic disorder (483 living cases), characterized by many clinical manifestations, including blindness, obesity, type 2 diabetes and cardiomyopathy. ALMS is caused by mutations in the ALMS1 gene, encoding for a large protein with implicated roles in ciliary function, cellular quiescence and intracellular transport. Patients with ALMS have extensive fibrosis in nearly all tissues resulting in a progressive organ failure which is often the ultimate cause of death. To focus on the role of ALMS1 mutations in the generation and maintenance of this pathological fibrosis, we performed gene expression analysis, ultrastructural characterization and functional assays in 4 dermal fibroblast cultures from ALMS patients. Using a genome-wide gene expression analysis we found alterations in genes belonging to specific categories (cell cycle, extracellular matrix (ECM) and fibrosis, cellular architecture/motility and apoptosis). ALMS fibroblasts display cytoskeleton abnormalities and migration impairment, up-regulate the expression and production of collagens and despite the increase in the cell cycle length are more resistant to apoptosis. Therefore ALMS1-deficient fibroblasts showed a constitutively activated myofibroblast phenotype even if they do not derive from a fibrotic lesion. Our results support a genetic basis for the fibrosis observed in ALMS and show that both an excessive ECM production and a failure to eliminate myofibroblasts are key mechanisms. Furthermore, our findings suggest new roles for ALMS1 in both intra- and extra-cellular events which are essential not only for the normal cellular function but also for cell-cell and ECM-cell interactions.
PMCID: PMC3082548  PMID: 21541333
3.  Latent Membrane Protein 1 of Epstein-Barr Virus Activates the hTERT Promoter and Enhances Telomerase Activity in B Lymphocytes▿  
Journal of Virology  2008;82(20):10175-10187.
Transformation of primary B lymphocytes by Epstein-Barr virus requires the establishment of a strictly latent infection, the expression of several latent viral proteins, and sustained telomerase activity. Our previous findings indicated that induction of hTERT, the rate-limiting catalytic unit of the telomerase complex, was associated with the expression of the viral latent membrane protein 1 (LMP1). In the present study, we demonstrate that ectopic expression of LMP1 in BJAB and Ramos B cells resulted in an increase of hTERT transcripts, thus suggesting that LMP1 acts at the transcriptional level. This was confirmed by transient expression of a luciferase reporter plasmid containing the hTERT promoter cotransfected with an LMP1-expressing vector or transfected into B cells in which LMP1 expression was inducible. Consistently, silencing of LMP1 by small interfering RNA resulted in a reduction of hTERT transcripts. We also provide evidence indicating that LMP1-induced hTERT activation is independently mediated by NF-κB and by mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 pathways, whereas CD40, Akt, and mTOR signaling has no involvement. Moreover, our results do not support a role for c-Myc in mediating these effects on hTERT, since ectopic expression of LMP1 did not upregulate c-Myc and silencing of this oncogene or E box mutagenesis failed to inhibit LMP1-induced hTERT activation. These findings indicate that LMP1 simultaneously modulates multiple signal transduction pathways in B cells to transactivate the hTERT promoter and enhance telomerase activity, thus confirming the pleiotropic nature of this viral oncoprotein.
PMCID: PMC2566252  PMID: 18684838

Results 1-3 (3)