PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Meta-Analysis of Mismatch Repair Polymorphisms within the Cogent Consortium for Colorectal Cancer Susceptibility 
PLoS ONE  2013;8(9):e72091.
In the last four years, Genome-Wide Association Studies (GWAS) have identified sixteen low-penetrance polymorphisms on fourteen different loci associated with colorectal cancer (CRC). Due to the low risks conferred by known common variants, most of the 35% broad-sense heritability estimated by twin studies remains unexplained. Recently our group performed a case-control study for eight Single Nucleotide Polymorphisms (SNPs) in 4 CRC genes. The present investigation is a follow-up of that study. We have genotyped six SNPs that showed a positive association and carried out a meta-analysis based on eight additional studies comprising in total more than 8000 cases and 6000 controls. The estimated recessive odds ratio for one of the SNPs, rs3219489 (MUTYH Q338H), decreased from 1.52 in the original Swedish study, to 1.18 in the Swedish replication, and to 1.08 in the initial meta-analysis. Since the corresponding summary probability value was 0.06, we decided to retrieve additional information for this polymorphism. The incorporation of six further studies resulted in around 13000 cases and 13000 controls. The newly updated OR was 1.03. The results from the present large, multicenter study illustrate the possibility of decreasing effect sizes with increasing samples sizes. Phenotypic heterogeneity, differential environmental exposures, and population specific linkage disequilibrium patterns may explain the observed difference of genetic effects between Sweden and the other investigated cohorts.
doi:10.1371/journal.pone.0072091
PMCID: PMC3765450  PMID: 24039736
2.  Genome-wide linkage scan for colorectal cancer susceptibility genes supports linkage to chromosome 3q 
BMC Cancer  2008;8:87.
Background
Colorectal cancer is one of the most common causes of cancer-related mortality. The disease is clinically and genetically heterogeneous though a strong hereditary component has been identified. However, only a small proportion of the inherited susceptibility can be ascribed to dominant syndromes, such as Hereditary Non-Polyposis Colorectal Cancer (HNPCC) or Familial Adenomatous Polyposis (FAP). In an attempt to identify novel colorectal cancer predisposing genes, we have performed a genome-wide linkage analysis in 30 Swedish non-FAP/non-HNPCC families with a strong family history of colorectal cancer.
Methods
Statistical analysis was performed using multipoint parametric and nonparametric linkage.
Results
Parametric analysis under the assumption of locus homogeneity excluded any common susceptibility regions harbouring a predisposing gene for colorectal cancer. However, several loci on chromosomes 2q, 3q, 6q, and 7q with suggestive linkage were detected in the parametric analysis under the assumption of locus heterogeneity as well as in the nonparametric analysis. Among these loci, the locus on chromosome 3q21.1-q26.2 was the most consistent finding providing positive results in both parametric and nonparametric analyses Heterogeneity LOD score (HLOD) = 1.90, alpha = 0.45, Non-Parametric LOD score (NPL) = 2.1).
Conclusion
The strongest evidence of linkage was seen for the region on chromosome 3. Interestingly, the same region has recently been reported as the most significant finding in a genome-wide analysis performed with SNP arrays; thus our results independently support the finding on chromosome 3q.
doi:10.1186/1471-2407-8-87
PMCID: PMC2324103  PMID: 18380902
3.  Complex aetiology of an apparently Mendelian form of Mental Retardation 
Background
Mental Retardation is a common heterogeneous neurodevelopment condition, which causes are still largely elusive. It has been suggested that half of the phenotypic variation of intelligence is explained by genetic variation. And genetic or inherited factors indeed account for most of the cases of mental retardation with an identifiable cause. However, only a few autosomal genes have been mapped and identified to date. In this report, the genetic causes for an apparently recessive form of mental retardation, in a large nordern swedish pedigree, are investigated.
Methods
After extensive evaluation of the patients, which ruled out recognizable patterns of malformation and excluded known causes of MR, a comprehensive genome-wide linkage analysis, with 500 microsatellite markers, was performed in 24 members of this family. Additionally, a genome-wide copy number analysis, using an affimetrix 250 K SNP chip, was performed in this pedigree.
Results
No significant LOD score was found with either parametric and non-parametric linkage analysis. The highest scores are located at chromosomes 13, 15 and 17. Genome-wide copy number analysis identified no clear cause for the disorder; but rather, several variants were present in the family members, irrespective of their affected status.
Conclusion
These results suggest that mental retardation in this family, unlikely what was expected, has a heterogeneous aetiology; and that several lower effect genes variants might be involved. To demonstrate such effects, our family may be too small. This study also indicates that the ascertainment of the cause of MR may be challenging, and that a complex aetiology may be present even within a pedigree, constituting an additional obstacle for genetic counselling. Variants in genes involved in molecular mechanisms of cellular plasticity, in genes involved in the development of underlying neural architectures, and in genes involved in neurodevelopment and in the ongoing function of terminally differentiated neurons may underlie the phenotypic variation of intelligence and explain instances of intellectual impairment.
doi:10.1186/1471-2350-9-6
PMCID: PMC2259315  PMID: 18254962
4.  Genes involved in TGFβ1-driven epithelial-mesenchymal transition of renal epithelial cells are topologically related in the human interactome map 
BMC Genomics  2007;8:383.
Background
Understanding how mesenchymal cells arise from epithelial cells could have a strong impact in unveiling mechanisms of epithelial cell plasticity underlying kidney regeneration and repair.
In primary human tubular epithelial cells (HUTEC) under different TGFβ1 concentrations we had observed epithelial-to-mesenchymal transition (EMT) but not epithelial-myofibroblast transdifferentiation. We hypothesized that the process triggered by TGFβ1 could be a dedifferentiation event. The purpose of this study is to comprehensively delineate genetic programs associated with TGFβ1-driven EMT in our in vitro model using gene expression profile on large-scale oligonucleotide microarrays.
Results
In HUTEC under TGFβ1 stimulus, 977 genes were found differentially expressed. Thirty genes were identified whose expression depended directly on TGFβ1 concentration. By mapping the differentially expressed genes in the Human Interactome Map using Cytoscape software, we identified a single scale-free network consisting of 2630 interacting proteins and containing 449 differentially expressed proteins. We identified 27 hub proteins in the interactome with more than 29 edges incident on them and encoded by differentially expressed genes. The Gene Ontology analysis showed an excess of up-regulated proteins involved in biological processes, such as "morphogenesis", "cell fate determination" and "regulation of development", and the most up-regulated genes belonged to these categories. In addition, 267 genes were mapped to the KEGG pathways and 14 pathways with more than nine differentially expressed genes were identified. In our model, Smad signaling was not the TGFβ1 action effector; instead, the engagement of RAS/MAPK signaling pathway seems mainly to regulate genes involved in the cell cycle and proliferation/apoptosis.
Conclusion
Our present findings support the hypothesis that context-dependent EMT generated in our model by TGFβ1 might be the outcome of a dedifferentiation. In fact: 1) the principal biological categories involved in the process concern morphogenesis and development; 2) the most up-regulated genes belong to these categories; and, finally, 3) some intracellular pathways are involved, whose engagement during kidney development and nephrogenesis is well known. These long-term effects of TGFβ1 in HUTEC involve genes that are highly interconnected, thereby generating a scale-free network that we named the "TGFβ1 interactome", whose hubs represent proteins that may have a crucial role for HUTEC in response to TGFβ1.
doi:10.1186/1471-2164-8-383
PMCID: PMC2174485  PMID: 17953753

Results 1-4 (4)