Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  CD152 (CTLA-4) Determines CD4 T Cell Migration In Vitro and In Vivo 
PLoS ONE  2009;4(5):e5702.
Migration of antigen-experienced T cells to secondary lymphoid organs and the site of antigenic-challenge is a mandatory prerequisite for the precise functioning of adaptive immune responses. The surface molecule CD152 (CTLA-4) is mostly considered as a negative regulator of T cell activation during immune responses. It is currently unknown whether CD152 can also influence chemokine-driven T cell migration.
Methodology/Principal Findings
We analyzed the consequences of CD152 signaling on Th cell migration using chemotaxis assays in vitro and radioactive cell tracking in vivo. We show here that the genetic and serological inactivation of CD152 in Th1 cells reduced migration towards CCL4, CXCL12 and CCL19, but not CXCL9, in a G-protein dependent manner. In addition, retroviral transduction of CD152 cDNA into CD152 negative cells restored Th1 cell migration. Crosslinking of CD152 together with CD3 and CD28 stimulation on activated Th1 cells increased expression of the chemokine receptors CCR5 and CCR7, which in turn enhanced cell migration. Using sensitive liposome technology, we show that mature dendritic cells but not activated B cells were potent at inducing surface CD152 expression and the CD152-mediated migration-enhancing signals. Importantly, migration of CD152 positive Th1 lymphocytes in in vivo experiments increased more than 200% as compared to CD152 negative counterparts showing that indeed CD152 orchestrates specific migration of selected Th1 cells to sites of inflammation and antigenic challenge in vivo.
We show here, that CD152 signaling does not just silence cells, but selects individual ones for migration. This novel activity of CD152 adds to the already significant role of CD152 in controlling peripheral immune responses by allowing T cells to localize correctly during infection. It also suggests that interference with CD152 signaling provides a tool for altering the cellular composition at sites of inflammation and antigenic challenge.
PMCID: PMC2682661  PMID: 19479036
2.  Multiple functions for CD28 and cytotoxic T lymphocyte antigen-4 during different phases of T cell responses: implications for arthritis and autoimmune diseases 
Arthritis Research & Therapy  2004;6(2):45-54.
Chronic T cell responses, as they occur in rheumatoid arthritis, are complex and are likely to involve many mechanisms. There is a growing body of evidence that, in concert with the T cell antigen receptor signal, CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4; CD152) are the primary regulators of T cell responses. Whereas CD28 primarily activates T cell processes, CTLA-4 inhibits them. The mechanism for this dichotomy is not fully understood, especially as CD28 and CTLA-4 recruit similar signalling molecules. In addition, recent studies demonstrate that CD28 and CTLA-4 have multiple functions during T cell responses. In particular, CTLA-4 exerts independent distinct effects during different phases of T cell responses that could be exploited for the treatment of rheumatoid arthritis.
PMCID: PMC400439  PMID: 15059264
CD152; costimulation; CTLA-4Ig; inflammation; polymorphism; signal transduction

Results 1-2 (2)