Search tips
Search criteria

Results 1-20 (20)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
author:("hupl, Thomas")
1.  Upregulation of Immunoproteasome Subunits in Myositis Indicates Active Inflammation with Involvement of Antigen Presenting Cells, CD8 T-Cells and IFNγ 
PLoS ONE  2014;9(8):e104048.
In idiopathic inflammatory myopathies (IIM) infiltration of immune cells into muscle and upregulation of MHC-I expression implies increased antigen presentation and involvement of the proteasome system. To decipher the role of immunoproteasomes in myositis, we investigated individual cell types and muscle tissues and focused on possible immune triggers.
Expression of constitutive (PSMB5, -6, -7) and corresponding immunoproteasomal subunits (PSMB8, -9, -10) was analyzed by real-time RT-PCR in muscle biopsies and sorted peripheral blood cells of patients with IIM, non-inflammatory myopathies (NIM) and healthy donors (HD). Protein analysis in muscle biopsies was performed by western blot. Affymetrix HG-U133 platform derived transcriptome data from biopsies of different muscle diseases and from immune cell types as well as monocyte stimulation experiments were used for validation, coregulation and coexpression analyses.
Real-time RT-PCR revealed significantly increased expression of immunoproteasomal subunits (PSMB8/-9/-10) in DC, monocytes and CD8+ T-cells in IIM. In muscle biopsies, the immunosubunits were elevated in IIM compared to NIM and exceeded levels of matched blood samples. Proteins of PSMB8 and -9 were found only in IIM but not NIM muscle biopsies. Reanalysis of 78 myositis and 20 healthy muscle transcriptomes confirmed these results and revealed involvement of the antigen processing and presentation pathway. Comparison with reference profiles of sorted immune cells and healthy muscle confirmed upregulation of PSMB8 and -9 in myositis biopsies beyond infiltration related changes. This upregulation correlated highest with STAT1, IRF1 and IFNγ expression. Elevation of T-cell specific transcripts in active IIM muscles was accompanied by increased expression of DC and monocyte marker genes and thus reflects the cell type specific involvement observed in peripheral blood.
Immunoproteasomes seem to indicate IIM activity and suggest that dominant involvement of antigen processing and presentation may qualify these diseases exemplarily for the evolving therapeutic concepts of immunoproteasome specific inhibition.
PMCID: PMC4123911  PMID: 25098831
2.  Novel application of multi-stimuli network inference to synovial fibroblasts of rheumatoid arthritis patients 
BMC Medical Genomics  2014;7:40.
Network inference of gene expression data is an important challenge in systems biology. Novel algorithms may provide more detailed gene regulatory networks (GRN) for complex, chronic inflammatory diseases such as rheumatoid arthritis (RA), in which activated synovial fibroblasts (SFBs) play a major role. Since the detailed mechanisms underlying this activation are still unclear, simultaneous investigation of multi-stimuli activation of SFBs offers the possibility to elucidate the regulatory effects of multiple mediators and to gain new insights into disease pathogenesis.
A GRN was therefore inferred from RA-SFBs treated with 4 different stimuli (IL-1 β, TNF- α, TGF- β, and PDGF-D). Data from time series microarray experiments (0, 1, 2, 4, 12 h; Affymetrix HG-U133 Plus 2.0) were batch-corrected applying ‘ComBat’, analyzed for differentially expressed genes over time with ‘Limma’, and used for the inference of a robust GRN with NetGenerator V2.0, a heuristic ordinary differential equation-based method with soft integration of prior knowledge.
Using all genes differentially expressed over time in RA-SFBs for any stimulus, and selecting the genes belonging to the most significant gene ontology (GO) term, i.e., ‘cartilage development’, a dynamic, robust, moderately complex multi-stimuli GRN was generated with 24 genes and 57 edges in total, 31 of which were gene-to-gene edges. Prior literature-based knowledge derived from Pathway Studio or manual searches was reflected in the final network by 25/57 confirmed edges (44%). The model contained known network motifs crucial for dynamic cellular behavior, e.g., cross-talk among pathways, positive feed-back loops, and positive feed-forward motifs (including suppression of the transcriptional repressor OSR2 by all 4 stimuli.
A multi-stimuli GRN highly concordant with literature data was successfully generated by network inference from the gene expression of stimulated RA-SFBs. The GRN showed high reliability, since 10 predicted edges were independently validated by literature findings post network inference. The selected GO term ‘cartilage development’ contained a number of differentiation markers, growth factors, and transcription factors with potential relevance for RA. Finally, the model provided new insight into the response of RA-SFBs to multiple stimuli implicated in the pathogenesis of RA, in particular to the ‘novel’ potent growth factor PDGF-D.
PMCID: PMC4099018  PMID: 24989895
Network modeling; Reverse engineering; Rheumatoid arthritis; Synovial fibroblasts; Cytokines; Growth factors; Cartilage development; Multi-stimuli modeling
3.  Identification of rheumatoid arthritis and osteoarthritis patients by transcriptome-based rule set generation 
Discrimination of rheumatoid arthritis (RA) patients from patients with other inflammatory or degenerative joint diseases or healthy individuals purely on the basis of genes differentially expressed in high-throughput data has proven very difficult. Thus, the present study sought to achieve such discrimination by employing a novel unbiased approach using rule-based classifiers.
Three multi-center genome-wide transcriptomic data sets (Affymetrix HG-U133 A/B) from a total of 79 individuals, including 20 healthy controls (control group - CG), as well as 26 osteoarthritis (OA) and 33 RA patients, were used to infer rule-based classifiers to discriminate the disease groups. The rules were ranked with respect to Kiendl’s statistical relevance index, and the resulting rule set was optimized by pruning. The rule sets were inferred separately from data of one of three centers and applied to the two remaining centers for validation. All rules from the optimized rule sets of all centers were used to analyze their biological relevance applying the software Pathway Studio.
The optimized rule sets for the three centers contained a total of 29, 20, and 8 rules (including 10, 8, and 4 rules for ‘RA’), respectively. The mean sensitivity for the prediction of RA based on six center-to-center tests was 96% (range 90% to 100%), that for OA 86% (range 40% to 100%). The mean specificity for RA prediction was 94% (range 80% to 100%), that for OA 96% (range 83.3% to 100%). The average overall accuracy of the three different rule-based classifiers was 91% (range 80% to 100%). Unbiased analyses by Pathway Studio of the gene sets obtained by discrimination of RA from OA and CG with rule-based classifiers resulted in the identification of the pathogenetically and/or therapeutically relevant interferon-gamma and GM-CSF pathways.
First-time application of rule-based classifiers for the discrimination of RA resulted in high performance, with means for all assessment parameters close to or higher than 90%. In addition, this unbiased, new approach resulted in the identification not only of pathways known to be critical to RA, but also of novel molecules such as serine/threonine kinase 10.
PMCID: PMC4060460  PMID: 24690414
4.  Cell-Specific Type I IFN Signatures in Autoimmunity and Viral Infection: What Makes the Difference? 
PLoS ONE  2013;8(12):e83776.
Gene expression profiling of peripheral blood mononuclear cells (PBMCs) has revealed a crucial role for type I interferon (IFN) in the pathogenesis of systemic lupus erythematosus (SLE). However, it is unclear how particular leucocyte subsets contribute to the overall type I IFN signature of PBMCs and whole blood samples.Furthermore, a detailed analysis describing the differences in the IFN signature in autoimmune diseases from that observed after viral infection has not been performed to date. Therefore, in this study, the transcriptional responses in peripheral T helper cells (CD4+) and monocyte subsets (CD16− inflammatory and CD16+ resident monocytes) isolated from patients with SLE, healthy donors (ND) immunised with the yellow fever vaccine YFV-17Dand untreated controls were compared by global gene expression profiling.It was striking that all of the transcripts that were regulated in response to viral exposure were also found to be differentially regulated in SLE, albeit with markedly lower fold-change values. In addition to this common IFN signature, a pathogenic IFN-associated gene signature was detected in the CD4+ T cells and monocytes from the lupus patients. IL-10, IL-9 and IL-15-mediated JAK/STAT signalling was shown to be involved in the pathological amplification of IFN responses observed in SLE. Type I IFN signatures identified were successfully applied for the monitoring of interferon responses in PBMCs of an independent cohort of SLE patients and virus-infected individuals. Moreover, these cell-type specific gene signatures allowed a correct classification of PBMCs independent from their heterogenic cellular composition. In conclusion, our data show for the first time that monocytes and CD4 cells are sensitive biosensors to monitor type I interferon response signatures in autoimmunity and viral infection and how these transriptional responses are modulated in a cell- and disease-specific manner.
PMCID: PMC3877094  PMID: 24391825
5.  Reverse Differentiation as a Gene Filtering Tool in Genome Expression Profiling of Adipogenesis for Fat Marker Gene Selection and Their Analysis 
PLoS ONE  2013;8(7):e69754.
During mesenchymal stem cell (MSC) conversion into adipocytes, the adipogenic cocktail consisting of insulin, dexamethasone, indomethacin and 3-isobutyl-1-methylxanthine not only induces adipogenic-specific but also genes for non-adipogenic processes. Therefore, not all significantly expressed genes represent adipogenic-specific marker genes. So, our aim was to filter only adipogenic-specific out of all expressed genes. We hypothesize that exclusively adipogenic-specific genes change their expression during adipogenesis, and reverse during dedifferentiation. Thus, MSC were adipogenic differentiated and dedifferentiated.
Adipogenesis and reverse adipogenesis was verified by Oil Red O staining and expression of PPARG and FABP4. Based on GeneChips, 991 genes were differentially expressed during adipogenesis and grouped in 4 clusters. According to bioinformatic analysis the relevance of genes with adipogenic-linked biological annotations, expression sites, molecular functions, signaling pathways and transcription factor binding sites was high in cluster 1, including all prominent adipogenic genes like ADIPOQ, C/EBPA, LPL, PPARG and FABP4, moderate in clusters 2–3, and negligible in cluster 4. During reversed adipogenesis, only 782 expressed genes (clusters 1–3) were reverted, including 597 genes not reported for adipogenesis before. We identified APCDD1, CHI3L1, RARRES1 and SEMA3G as potential adipogenic-specific genes.
The model system of adipogenesis linked to reverse adipogenesis allowed the filtration of 782 adipogenic-specific genes out of total 991 significantly expressed genes. Database analysis of adipogenic-specific biological annotations, transcription factors and signaling pathways further validated and valued our concept, because most of the filtered 782 genes showed affiliation to adipogenesis. Based on this approach, the selected and filtered genes would be potentially important for characterization of adipogenesis and monitoring of clinical translation for soft-tissue regeneration. Moreover, we report 4 new marker genes.
PMCID: PMC3724870  PMID: 23922792
6.  Chondrogenic differentiation of human subchondral progenitor cells is affected by synovial fluid from donors with osteoarthritis or rheumatoid arthritis 
Microfracture is a first-line treatment option for cartilage repair. In microfracture, subchondral mesenchymal cortico-spongious progenitor cells (CSP) enter the defect and form cartilage repair tissue. The aim of our study was to investigate the effects of joint disease conditions on the in vitro chondrogenesis of human CSP.
CSP were harvested from the subchondral bone marrow. CSP characterization was performed by analysis of cell surface antigen pattern and by assessing the chondrogenic, osteogenic and adipogenic differentiation potential, histologically. To assess the effect of synovial fluid (SF) on chondrogenesis of CSP, micro-masses were stimulated with SF from healthy (ND), osteoarthritis (OA) and rheumatoid arthritis donors (RA) without transforming growth factor beta 3.
CSP showed the typical cell surface antigen pattern known from mesenchymal stem cells and were capable of osteogenic, adipogenic and chondrogenic differentiation. In micro-masses stimulated with SF, histological staining as well as gene expression analysis of typical chondrogenic marker genes showed that SF from ND and OA induced the chondrogenic marker genes aggrecan, types II and IX collagen, cartilage oligomeric matrix protein (COMP) and link protein, compared to controls not treated with SF. In contrast, the supplementation with SF from RA donors decreased the expression of aggrecan, type II collagen, COMP and link protein, compared to CSP treated with SF from ND or OA.
These results suggest that in RA, SF may impair cartilage repair by subchondral mesenchymal progenitor cells in microfracture, while in OA, SF may has no negative, but a delaying effect on the cartilage matrix formation.
PMCID: PMC3349532  PMID: 22414301
Cartilage regeneration; Chondrogenesis; Osteoarthritis; Synovial fluid; Microfracture; Rheumatoid arthritis; Stem cell
7.  Human bone marrow mesenchymal stem cells: a systematic reappraisal via the genostem experience 
Stem Cell Reviews  2011;7(1):32-42.
Genostem (acronym for “Adult mesenchymal stem cells engineering for connective tissue disorders. From the bench to the bed side”) has been an European consortium of 30 teams working together on human bone marrow Mesenchymal Stem Cell (MSC) biological properties and repair capacity. Part of Genostem activity has been dedicated to the study of basic issues on undifferentiated MSCs properties and on signalling pathways leading to the differentiation into 3 of the connective tissue lineages, osteoblastic, chondrocytic and tenocytic. We have evidenced that native bone marrow MSCs and stromal cells, forming the niche of hematopoietic stem cells, were the same cellular entity located abluminally from marrow sinus endothelial cells. We have also shown that culture-amplified, clonogenic and highly-proliferative MSCs were bona fide stem cells, sharing with other stem cell types the major attributes of self-renewal and of multipotential priming to the lineages to which they can differentiate (osteoblasts, chondrocytes, adipocytes and vascular smooth muscle cells/pericytes). Extensive transcription profiling and in vitro and in vivo assays were applied to identify genes involved in differentiation. Thus we have described novel factors implicated in osteogenesis (FHL2, ITGA5, Fgf18), chondrogenesis (FOXO1A) and tenogenesis (Smad8). Another part of Genostem activity has been devoted to studies of the repair capacity of MSCs in animal models, a prerequisite for future clinical trials. We have developed novel scaffolds (chitosan, pharmacologically active microcarriers) useful for the repair of both bone and cartilage. Finally and most importantly, we have shown that locally implanted MSCs effectively repair bone, cartilage and tendon.
PMCID: PMC3213118  PMID: 20198518
Animals; Bone Marrow Cells; cytology; Cell Culture Techniques; standards; Cell Differentiation; Cell Proliferation; Humans; Mesenchymal Stem Cells; cytology; Tissue Engineering; differentiation; stem cell; bone; cartilage; tendon; smooth muscle; regenerative medicine
8.  Differential gene expression profiling of human bone marrow-derived mesenchymal stem cells during adipogenic development 
BMC Genomics  2011;12:461.
Adipogenesis is the developmental process by which mesenchymal stem cells (MSC) differentiate into pre-adipocytes and adipocytes. The aim of the study was to analyze the developmental strategies of human bone marrow MSC developing into adipocytes over a defined time scale. Here we were particularly interested in differentially expressed transcription factors and biochemical pathways. We studied genome-wide gene expression profiling of human MSC based on an adipogenic differentiation experiment with five different time points (day 0, 1, 3, 7 and 17), which was designed and performed in reference to human fat tissue. For data processing and selection of adipogenic candidate genes, we used the online database SiPaGene for Affymetrix microarray expression data.
The mesenchymal stem cell character of human MSC cultures was proven by cell morphology, by flow cytometry analysis and by the ability of the cells to develop into the osteo-, chondro- and adipogenic lineage. Moreover we were able to detect 184 adipogenic candidate genes (85 with increased, 99 with decreased expression) that were differentially expressed during adipogenic development of MSC and/or between MSC and fat tissue in a highly significant way (p < 0.00001). Subsequently, groups of up- or down-regulated genes were formed and analyzed with biochemical and cluster tools. Among the 184 genes, we identified already known transcription factors such as PPARG, C/EBPA and RTXA. Several of the genes could be linked to corresponding biochemical pathways like the adipocyte differentiation, adipocytokine signalling, and lipogenesis pathways. We also identified new candidate genes possibly related to adipogenesis, such as SCARA5, coding for a receptor with a putative transmembrane domain and a collagen-like domain, and MRAP, encoding an endoplasmatic reticulum protein.
Comparing differential gene expression profiles of human MSC and native fat cells or tissue allowed us to establish a comprehensive differential kinetic gene expression network of adipogenesis. Based on this, we identified known and unknown genes and biochemical pathways that may be relevant for adipogenic differentiation. Our results encourage further and more focused studies on the functional relevance of particular adipogenic candidate genes.
PMCID: PMC3222637  PMID: 21943323
9.  Crosstalks between integrin alpha 5 and IGF2/IGFBP2 signalling trigger human bone marrow-derived mesenchymal stromal osteogenic differentiation 
BMC Cell Biology  2010;11:44.
The potential of mesenchymal stromal cells (MSCs) to differentiate into functional bone forming cells provides an important tool for bone regeneration. The identification of factors that trigger osteoblast differentiation in MSCs is therefore critical to promote the osteogenic potential of human MSCs. In this study, we used microarray analysis to identify signalling molecules that promote osteogenic differentiation in human bone marrow stroma derived MSCs.
Microarray analysis and validation experiments showed that the expression of IGF2 and IGFBP2 was increased together with integrin alpha5 (ITGA5) during dexamethasone-induced osteoblast differentiation in human MSCs. This effect was functional since we found that IGF2 and IGFBP2 enhanced the expression of osteoblast phenotypic markers and in vitro osteogenic capacity of hMSCs. Interestingly, we showed that downregulation of endogenous ITGA5 using specific shRNA decreased IGF2 and IGFBP2 expression in hMSCs. Conversely, ITGA5 overexpression upregulated IGF2 and IGFBP2 expression in hMSCs, which indicates tight crosstalks between these molecules. Consistent with this concept, activation of endogenous ITGA5 using a specific antibody that primes the integrin, or a peptide that specifically activates ITGA5 increased IGF2 and IGFBP2 expression in hMSCs. Finally, we showed that pharmacological inhibition of FAK/ERK1/2-MAPKs or PI3K signalling pathways that are enhanced by ITGA5 activation, blunted IGF2 and IGFBP2 expression in hMSCs.
The results show that ITGA5 is a key mediator of IGF2 and IGFBP2 expression that promotes osteoblast differentiation in human MSCs, and reveal that crosstalks between ITGA5 and IGF2/IGFBP2 signalling are important mechanisms that trigger osteogenic differentiation in human bone marrow derived mesenchymal stromal cells.
PMCID: PMC2901205  PMID: 20573191
11.  SiPaGene: A new repository for instant online retrieval, sharing and meta-analyses of GeneChip® expression data 
BMC Genomics  2009;10:98.
Microarray expression profiling is becoming a routine technology for medical research and generates enormous amounts of data. However, reanalysis of public data and comparison with own results is laborious. Although many different tools exist, there is a need for more convenience and online analysis with restriction of access and user specific sharing options. Furthermore, most of the currently existing tools do not use the whole range of statistical power provided by the MAS5.0/GCOS algorithms.
With a current focus on immunology, infection, inflammation, tissue regeneration and cancer we developed a database platform that can load preprocessed Affymetrix GeneChip expression data for immediate access. Group or subgroup comparisons can be calculated online, retrieved for candidate genes, transcriptional activity in various biological conditions and compared with different experiments. The system is based on Oracle 9i with algorithms in java and graphical user interfaces implemented as java servlets. Signals, detection calls, signal log ratios, change calls and corresponding p-values were calculated with MAS5.0/GCOS algorithms. MIAME information and gene annotations are provided via links to GEO and EntrezGene. Users access via https protocol their own, shared or public data. Sharing is comparison- and user-specific with different levels of rights. Arrays for group comparisons can be selected individually. Twenty-two different group comparison parameters can be applied in user-defined combinations on single or multiple group comparisons. Identified genes can be reviewed online or downloaded. Optimized selection criteria were developed and reliability was demonstrated with the "Latin Square" data set. Currently more than 1,000 arrays, 10,000 pairwise comparisons and 500 group comparisons are presented with public or restricted access by different research networks or individual users.
SiPaGene is a repository and a high quality tool for primary analysis of GeneChips. It exploits the MAS5.0/GCOS pairwise comparison algorithm, enables restricted access and user specific sharing. It does not aim for a complete representation of all public arrays but for high quality analysis with stepwise integration of reference signatures for detailed meta-analyses. Development of additional tools like functional annotation networks based on expression information will be future steps towards a systematic biological analysis of expression profiles.
PMCID: PMC2657156  PMID: 19265543
12.  Autoregulation of Th1-mediated inflammation by twist1 
The Journal of Experimental Medicine  2008;205(8):1889-1901.
The basic helix-loop-helix transcriptional repressor twist1, as an antagonist of nuclear factor κB (NF-κB)–dependent cytokine expression, is involved in the regulation of inflammation-induced immunopathology. We show that twist1 is expressed by activated T helper (Th) 1 effector memory (EM) cells. Induction of twist1 in Th cells depended on NF-κB, nuclear factor of activated T cells (NFAT), and interleukin (IL)-12 signaling via signal transducer and activator of transcription (STAT) 4. Expression of twist1 was transient after T cell receptor engagement, and increased upon repeated stimulation of Th1 cells. Imprinting for enhanced twist1 expression was characteristic of repeatedly restimulated EM Th cells, and thus of the pathogenic memory Th cells characteristic of chronic inflammation. Th lymphocytes from the inflamed joint or gut tissue of patients with rheumatic diseases, Crohn's disease or ulcerative colitis expressed high levels of twist1. Expression of twist1 in Th1 lymphocytes limited the expression of the cytokines interferon-γ, IL-2, and tumor necrosis factor-α, and ameliorated Th1-mediated immunopathology in delayed-type hypersensitivity and antigen-induced arthritis.
PMCID: PMC2525589  PMID: 18663125
13.  Antirheumatic drug response signatures in human chondrocytes: potential molecular targets to stimulate cartilage regeneration 
Rheumatoid arthritis (RA) leads to progressive destruction of articular cartilage. This study aimed to disclose major mechanisms of antirheumatic drug action on human chondrocytes and to reveal marker and pharmacological target genes that are involved in cartilage dysfunction and regeneration.
An interactive in vitro cultivation system composed of human chondrocyte alginate cultures and conditioned supernatant of SV40 T-antigen immortalised human synovial fibroblasts was used. Chondrocyte alginate cultures were stimulated with supernatant of RA synovial fibroblasts, of healthy donor synovial fibroblasts, and of RA synovial fibroblasts that have been antirheumatically treated with disease-modifying antirheumatic drugs (DMARDs) (azathioprine, gold sodium thiomalate, chloroquine phosphate, and methotrexate), nonsteroidal anti-inflammatory drugs (NSAIDs) (piroxicam and diclofenac), or steroidal anti-inflammatory drugs (SAIDs) (methylprednisolone and prednisolone). Chondrocyte gene expression profile was analysed using microarrays. Real-time reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay were performed for validation of microarray data.
Genome-wide expression analysis revealed 110 RA-related genes in human chondrocytes: expression of catabolic mediators (inflammation, cytokines/chemokines, and matrix degradation) was induced, and expression of anabolic mediators (matrix synthesis and proliferation/differentiation) was repressed. Potential marker genes to define and influence cartilage/chondrocyte integrity and regeneration were determined and include already established genes (COX-2, CXCR-4, IL-1RN, IL-6/8, MMP-10/12, and TLR-2) and novel genes (ADORA2A, BCL2-A1, CTGF, CXCR-7, CYR-61, HSD11B-1, IL-23A, MARCKS, MXRA-5, NDUFA4L2, NR4A3, SMS, STS, TNFAIP-2, and TXNIP). Antirheumatic treatment with SAIDs showed complete and strong reversion of RA-related gene expression in human chondrocytes, whereas treatment with NSAIDs and the DMARD chloroquine phosphate had only moderate to minor effects. Treatment with the DMARDs azathioprine, gold sodium thiomalate, and methotrexate efficiently reverted chondrocyte RA-related gene expression toward the 'healthy' level. Pathways of cytokine-cytokine receptor interaction, transforming growth factor-beta/Toll-like receptor/Jak-STAT (signal transducer and activator of transcription) signalling and extracellular matrix receptor interaction were targeted by antirheumatics.
Our findings indicate that RA-relevant stimuli result in the molecular activation of catabolic and inflammatory processes in human chondrocytes that are reverted by antirheumatic treatment. Candidate genes that evolved in this study for new therapeutic approaches include suppression of specific immune responses (COX-2, IL-23A, and IL-6) and activation of cartilage regeneration (CTGF and CYR-61).
PMCID: PMC2688247  PMID: 19192274
14.  Key regulatory molecules of cartilage destruction in rheumatoid arthritis: an in vitro study 
Rheumatoid arthritis (RA) is a chronic, inflammatory and systemic autoimmune disease that leads to progressive cartilage destruction. Advances in the treatment of RA-related destruction of cartilage require profound insights into the molecular mechanisms involved in cartilage degradation. Until now, comprehensive data about the molecular RA-related dysfunction of chondrocytes have been limited. Hence, the objective of this study was to establish a standardized in vitro model to profile the key regulatory molecules of RA-related destruction of cartilage that are expressed by human chondrocytes.
Human chondrocytes were cultured three-dimensionally for 14 days in alginate beads and subsequently stimulated for 48 hours with supernatants from SV40 T-antigen immortalized human synovial fibroblasts (SF) derived from a normal donor (NDSF) and from a patient with RA (RASF), respectively. To identify RA-related factors released from SF, supernatants of RASF and NDSF were analyzed with antibody-based protein membrane arrays. Stimulated cartilage-like cultures were used for subsequent gene expression profiling with oligonucleotide microarrays. Affymetrix GeneChip Operating Software and Robust Multi-array Analysis (RMA) were used to identify differentially expressed genes. Expression of selected genes was verified by real-time RT-PCR.
Antibody-based protein membrane arrays of synovial fibroblast supernatants identified RA-related soluble mediators (IL-6, CCL2, CXCL1–3, CXCL8) released from RASF. Genome-wide microarray analysis of RASF-stimulated chondrocytes disclosed a distinct expression profile related to cartilage destruction involving marker genes of inflammation (adenosine A2A receptor, cyclooxygenase-2), the NF-κB signaling pathway (toll-like receptor 2, spermine synthase, receptor-interacting serine-threonine kinase 2), cytokines/chemokines and receptors (CXCL1–3, CXCL8, CCL20, CXCR4, IL-1β, IL-6), cartilage degradation (matrix metalloproteinase (MMP)-10, MMP-12) and suppressed matrix synthesis (cartilage oligomeric matrix protein, chondroitin sulfate proteoglycan 2).
Differential transcriptome profiling of stimulated human chondrocytes revealed a disturbed catabolic–anabolic homeostasis of chondrocyte function and disclosed relevant pharmacological target genes of cartilage destruction. This study provides comprehensive insight into molecular regulatory processes induced in human chondrocytes during RA-related destruction of cartilage. The established model may serve as a human in vitro disease model of RA-related destruction of cartilage and may help to elucidate the molecular effects of anti-rheumatic drugs on human chondrocyte gene expression.
PMCID: PMC2374452  PMID: 18205922
15.  Decrease in expression of bone morphogenetic proteins 4 and 5 in synovial tissue of patients with osteoarthritis and rheumatoid arthritis 
Bone morphogenetic proteins (BMPs) have been identified as important morphogens with pleiotropic functions in regulating the development, homeostasis and repair of various tissues. The aim of this study was to characterize the expression of BMPs in synovial tissues under normal and arthritic conditions. Synovial tissue from normal donors (ND) and from patients with osteoarthritis (OA) and rheumatoid arthritis (RA) were analyzed for BMP expression by using microarray hybridization. Differential expression of BMP-4 and BMP-5 was validated by semiquantitative RT-PCR, in situ hybridization and immunohistochemistry. Activity of arthritis was determined by routine parameters for systemic inflammation, by histological scoring of synovitis and by semiquantitative RT-PCR of IL-1β, TNF-α, stromelysin and collagenase I in synovial tissue. Expression of BMP-4 and BMP-5 mRNA was found to be significantly decreased in synovial tissue of patients with RA in comparison with ND by microarray analysis (p < 0.0083 and p < 0.0091). Validation by PCR confirmed these data in RA (p < 0.002) and also revealed a significant decrease in BMP-4 and BMP-5 expression in OA compared with ND (p < 0.015). Furthermore, histomorphological distribution of both morphogens as determined by in situ hybridization and immunohistochemistry showed a dominance in the lining layer of normal tissues, whereas chronically inflamed tissue from patients with RA revealed BMP expression mainly scattered across deeper layers. In OA, these changes were less pronounced with variable distribution of BMPs in the lining and sublining layer. BMP-4 and BMP-5 are expressed in normal synovial tissue and were found decreased in OA and RA. This may suggest a role of distinct BMPs in joint homeostasis that is disturbed in inflammatory and degenerative joint diseases. In comparison with previous reports, these data underline the complex impact of these factors on homeostasis and remodeling in joint physiology and pathology.
PMCID: PMC1526630  PMID: 16542506
16.  Detailed analysis of the variability of peptidylarginine deiminase type 4 in German patients with rheumatoid arthritis: a case–control study 
Peptidylarginine deiminase type 4 (PADI4) genotypes were shown to influence susceptibility to rheumatoid arthritis (RA) in the Japanese population. Such an association could not previously be confirmed in different European populations. In the present study, we analysed exons 2–4 of PADI4 in 102 German RA patients and 102 healthy individuals to study the influence of PADI4 variability on RA susceptibility by means of haplotype-specific DNA sequencing. Analyses of the influence of PADI4 and HLA-DRB1 genotypes on disease activity and on levels of anti-cyclic citrullinated peptide antibodies were performed.
Comparing the frequencies of PADI4 haplotype 4 (padi4_89*G, padi4_90*T, padi4_92*G, padi4_94*T, padi4_104*C, padi4_95*G, padi4_96*T) (patients, 14.7%; controls, 7.8%; odds ratio = 2.0, 95% confidence interval = 1.1–3.8) and carriers of this haplotype (patients, 27.5%; controls, 13.7%; odds ratio = 2.4, 95% confidence interval = 1.2–4.8), a significant positive association of PADI4 haplotype 4 with RA could be demonstrated. Other PADI4 haplotypes did not differ significantly between patients and controls. Regarding the individual PADI4 variants, padi4_89 (A→G), padi4_90 (C→T), and padi4_94 (C→T) were significantly associated with RA (patients, 49.5%; controls, 38.7%; odds ratio = 1.6, 95% confidence interval = 1.1–2.3). Considering novel PADI4 variants located in or near to exons 2, 3, and 4, no quantitative or qualitative differences between RA patients (8.8%) and healthy controls (10.8%) could be demonstrated. While the PADI4 genotype did not influence disease activity and the anti-cyclic citrullinated peptide antibody level, the presence of the HLA-DRB1 shared epitope was significantly associated with higher anti-cyclic citrullinated peptide antibody levels (P = 0.033).
The results of this small case–control study support the hypothesis that variability of the PADI4 gene may influence susceptibility to RA in the German population. Quantitative or qualitative differences in previously undefined PADI4 variants between patients and controls could not be demonstrated.
PMCID: PMC1526594  PMID: 16469113
17.  Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells 
Arthritis Research & Therapy  2005;7(6):R1304-R1315.
Previous studies have reported that mesenchymal stem cells (MSC) may be isolated from the synovial membrane by the same protocol as that used for synovial fibroblast cultivation, suggesting that MSC correspond to a subset of the adherent cell population, as MSC from the stromal compartment of the bone marrow (BM). The aims of the present study were, first, to better characterize the MSC derived from the synovial membrane and, second, to compare systematically, in parallel, the MSC-containing cell populations isolated from BM and those derived from the synovium, using quantitative assays. Fluorescent-activated cell sorting analysis revealed that both populations were negative for CD14, CD34 and CD45 expression and that both displayed equal levels of CD44, CD73, CD90 and CD105, a phenotype currently known to be characteristic of BM-MSC. Comparable with BM-MSC, such MSC-like cells isolated from the synovial membrane were shown for the first time to suppress the T-cell response in a mixed lymphocyte reaction, and to express the enzyme indoleamine 2,3-dioxygenase activity to the same extent as BM-MSC, which is a possible mediator of this suppressive activity. Using quantitative RT-PCR these data show that MSC-like cells from the synovium and BM may be induced to chondrogenic differentiation and, to a lesser extent, to osteogenic differentiation, but the osteogenic capacities of the synovium-derived MSC were significantly reduced based on the expression of the markers tested (collagen type II and aggrecan or alkaline phosphatase and osteocalcin, respectively). Transcription profiles, determined with the Atlas Human Cytokine/Receptor Array, revealed discrimination between the MSC-like cells from the synovial membrane and the BM-MSC by 46 of 268 genes. In particular, activin A was shown to be one major upregulated factor, highly secreted by BM-MSC. Whether this reflects a different cellular phenotype, a different amount of MSC in the synovium-derived population compared with BM-MSC adherent cell populations or the impact of a different microenvironment remains to be determined. In conclusion, although the BM-derived and synovium-derived MSC shared similar phenotypic and functional properties, both their differentiation capacities and transcriptional profiles permit one to discriminate the cell populations according to their tissue origin.
PMCID: PMC1297577  PMID: 16277684
18.  Perspectives and limitations of gene expression profiling in rheumatology: new molecular strategies 
Arthritis Research & Therapy  2004;6(4):140-146.
The deciphering of the sequence of the human genome has raised the expectation of unravelling the specific role of each gene in physiology and pathology. High-throughput technologies for gene expression profiling provide the first practical basis for applying this information. In rheumatology, with its many diseases of unknown pathogenesis and puzzling inflammatory aspects, these advances appear to promise a significant advance towards the identification of leading mechanisms of pathology. Expression patterns reflect the complexity of the molecular processes and are expected to provide the molecular basis for specific diagnosis, therapeutic stratification, long-term monitoring and prognostic evaluation. Identification of the molecular networks will help in the discovery of appropriate drug targets, and permit focusing on the most effective and least toxic compounds. Current limitations in screening technologies, experimental strategies and bioinformatic interpretation will shortly be overcome by the rapid development in this field. However, gene expression profiling, by its nature, will not provide biochemical information on functional activities of proteins and might only in part reflect underlying genetic dysfunction. Genomic and proteomic technologies will therefore be complementary in their scientific and clinical application.
PMCID: PMC464885  PMID: 15225356
expression profiling; genomics; molecular strategies; pathway models; signatures
19.  Autologous stem-cell transplantation in refractory autoimmune diseases after in vivo immunoablation and ex vivo depletion of mononuclear cells 
Arthritis Research  2000;2(4):327-336.
Autoimmune diseases that are resistant to conventional treatment cause severe morbidity and even mortality. In the present study we demonstrate that complete remissions can be achieved in refractory polychondritis and systemic lupus erythematosus (SLE), even at advanced stage, with the use of autologous stem-cell transplantation (SCT). Remissions persisted after reconstitution of the immune system. In the treatment of advanced systemic sclerosis (SSc), stable disease may be achieved with autologous SCT.
Patients with persistently active autoimmune diseases are considered to be candidates for autologous SCT. We performed a phase 1/2 study in a limited number of patients who were refractory to conventional immunosuppressive treatment. Following a period of uncontrolled disease activity for at least 6 months, autologous SCT was performed, after in vivo immunoablation and ex vivo depletion of mononuclear cells.
To investigate feasibility, toxicity and efficacy of the treatment, and the incidence of emergent infections.
Seven patients (aged between 23 and 48 years) were included in the single-centre trial: one had relapsing polychondritis, three had treatment-refractory SLE and three patients had SSc. Stem-cell mobilization was achieved by treatment with moderate-dose cyclophosphamide (2 g/m2; in terms of myelotoxic side effects or myelosuppression) and granulocyte colony-stimulating factor (G-CSF). CD34- cells of the leukapheresis products were removed by high-gradient magnetic cell sorting. After stem-cell collection, immunoablation was performed with high-dose cyclophosphamide (200 mg/kg body weight) and antithymocyte globulin (ATG; 90 mg/kg body weight). Autologous SCT was followed by reconstitution of the immune system, which was monitored by six-parameter flow cytometry and standard serology. The trial fulfilled the European League Against Rheumatism (EULAR) and the European Group for Blood and Marrow Transplantation (EBMT) guidelines for blood and bone marrow stem-cell transplants in autoimmune disease.
Among the seven patients studied, the patient with relapsing polychondritis and the patients with SLE were successfully treated and remained in complete remission during a follow up of 10-21 months. Remission persisted despite reconstitution of the immune system, resulting in high numbers of effector-/memory-type T-helper lymphocytes and increasing populations in the naïve T-cell compartment. Before autologous SCT, one of the patients with SLE had a long-lasting secondary antiphospholipid syndrome, with high anticardiolipin antibodies and thromboembolic events. After autologous SCT the antiphospholipid antibodies became negative, and no thrombosis occurred during follow up. Two of the patients with SSc were unaffected by treatment with autologous SCT for 6 or 13 months. The other patient with SSc died 2 days after autologous SCT because of cardiac failure.
During stem-cell mobilization with G-CSF, flares of autoimmune disease were seen in the patient with polychondritis and in one patient with SLE. The strategy utilized for depletion of CD34- cells led to a reduction by 4.5-5 log of contaminating CD3+ cells in the transplant. T-cell add-back was required in the patient with polychondritis and in one patient with SLE to provide a dose of 1×104 CD3+ cells/kg body weight for the transplant.
In vivo immunoablation in combination with autologous SCT after ex vivo depletion of CD34- cells can block the autoimmune process in relapsing polychondritis or SLE without incidence of severe infections. The remissions were achieved in patients with advanced disease that was refractory to previous intensive immunosuppressive therapy. The present results do not indicate that large-scale contamination of the stem-cell transplant with autoreactive cells after selection for CD34+cells occurred. After the preparative regimen, the application of G-CSF was avoided, because induction of flares of the autoimmune disease were noticed during the mobilization of stem cells. In SSc patients, distinct remissions were not observable after autologous SCT; the serological and clinical status did not improve. Follow-up periods of more than 12 months may be required to identify successful treatment with autologous SCT in SSc patients. Among the various autoimmune diseases the efficacy of autologous SCT appears to be dependent on the underlying pathophysiology. The results of the present phase 1/2 study suggest that patients with advanced stage SSc should not be treated with autologous SCT, until the reasons for the lack of response and the possible mortality due to cardiac complications are identified. The observation of flares of autoimmune disease after application of G-CSF emphasizes the need for critical evaluation of the role of G-CSF in immunoablative regimens.
PMCID: PMC17815  PMID: 11056673
autologous stem-cell transplantation; polychondritis; refractory autoimmune disease; systemic lupus erythematosus; systemic sclerosis

Results 1-20 (20)